

Index

HEADQUARTERS

AFHER EUROBELT S.A

Topacio, 41

47012 - Valladolid (Spain)

Tel.: +34 983 217 480

e-mail: afher@eurobelt.com

LATIN AMERICA PLANT

AFHER EUROBELT MEXICO SA DE CV

Av. Inglaterra 9250

Colonia La venta del Astillero

Zapopan, Jalisco - México

Tel.: +52 33 1704 5054

e-mail: gerencia_ventas@eurobelt.mx

ASIA-PACIFIC PLANT

EUROBELT BELTING SOLUTIONS, PVT LTD

N° 52/3, Madanayakana Halli,

Madavara Post Dasanapura Hobli

Bangalore Urban District - 562123 (India)

Tel.: +91 (0) 80 23718649

e-mail: sales@eurobelt.co.in

AGURUBEL. "Eurobelt, a success story in constant evolution" 2015 New corporate image 1980s Modern plastics boom Eurobelt, already focused exclusively Large-scale introduction of internal on the manufacture of modular plastic transport solutions based on plastic modular belts for the entire Spanish belts and their accessories and with a territory. strong international activity, renews its corporate image to be more in line with its identity and values. The new logos and the new corporate identity are presented to the market. 1972 Constitution of the company Ángel San Miguel, starts up the company 1990 Own manufacture 2012 Factory opening in India after detecting the internal convey 2021 Factory opening in Mexico Implementation of R + D + i structure with needs of the factories located in the In order to maintain our commitment to After the success of so many years, injection and assembly machinery for its region. Eurobelt's begins its journey offer very short delivery times, Eurobelt Eurobelt decides to install its first plant in . EUROBELT own manufacturing of the entire range as a manufacturer of solutions for installs a new modular belt assembly Latin America in order to offer an optimal of modular belts marketed up to know, the transportation of goods inside the and shipping plant in India. With our service through its own local staff made which makes Eurobelt one of the leading factories. own technical and commercial team up of a technical and commercial team manufacturers of plastic modular belts in and maintaining our philosophy of of specialists in plastic modular belts. the world. closeness and personalized attention to our customers. 1996 Opening to the EU 2002 Expansion in Asia and Oceania **2004** Expansion into other markets Eurobelt's business development The remarkable success in the national Commercial activity in Southeast Asia is continues growing up. The confidence market, places Eurobelt in a priority growing significantly and more and more of new customers in Eurobelt products position that makes it open the doors to customers trust on Eurobelt. To give a better allows us to reach new markets in South coverage Eurobelt establishes a progressive Europe. America, mainly in Mexico, Colombia and expansion in countries such as: India, Thailand,

Japan and Australia.

Italy, UK, etc. ...

It is when it begins its journey in France,

Ecuador, to later be present in Argentina,

Chile and the Dominican Republic,

Panama and Guatemala.

Modular **system**

CHARACTERISTICS

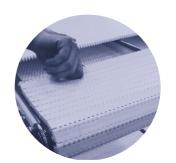
The EUROBELT conveyor belts are moulded with technical plastics forming a structure of injected pieces interlaced in an advanced design, whose configuration makes them be the suitable support for conveying food and industrial products.

Their modular configuration allows us to manufacture a madeto-measure belt for you.

We will introduce the rod in the hole existing across every module to join the different lines of modules that make up the belt.

The fastening of the rods is carried out by means of extractable caps. These caps will be inserted into the lodgings existing for that purpose in the end modules.

Having a minimum coefficient of friction will avoid traditional lubrication sprays, improving working conditions, reducing maintenance and eliminating the problem of wet products.



MINIMUM MAINTENANCE

One of the most important characteristics of the plastic modular belt is the low maintenance cost.

With a minimal expenditure in preventive maintenance, the belt can work uninterruptedly until the wear of the material itself, due to the friction with the fixed portions of the conveyor, advises its replacement in order to avoid unexpected stops.

In case of accident (tear or breakage) the repair will just take some minutes, the necessary time for replacing the damaged modules with no need of any specific tool.

NOISELESS AND LIGHT. NO NEED TO APPLY ANY LUBRICANT

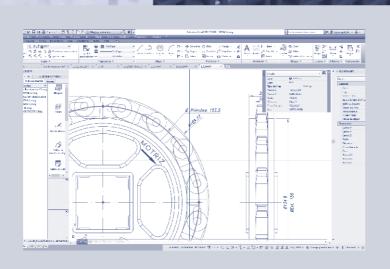
Due to their low weight, the support structures are light and easy to handle, needing motors of lesser power, which implies an energy saving.

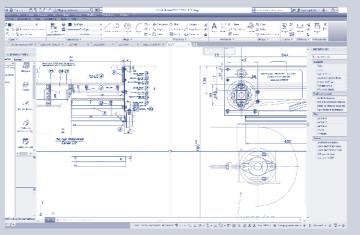
Minimum coefficient of friction that avoids the traditional lubricant sprinkling, improving the work conditions, reducing the maintenance, and eliminating the problem of wet products.

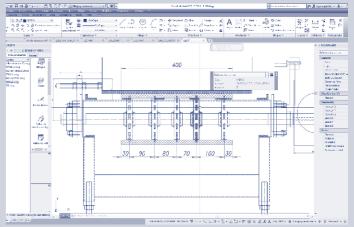
The EUROBELT plastic modular belts can be moved, taken off, lifted, even easily dismantled, in order to allow the access to the most difficult areas to clean.

Water fan nozzles can be installed inside and outside the rotations of the belt to carry out a continuous cleaning.

For cleaning our plastic modular belts, use water and gel, and rinse with water and disinfectant.




OWN DESIGN


Eurobelt has its own technical team that designs and develops its own belts, with the most current and reliable technology.

Based on its own experience and gathering market demands, the R + D + I technical team develops new products or modifies current ones in order to provide a response tailored to users demands.

This ability to develop or adapt solutions according to demands is one of the hallmarks of Eurobelt, becoming a reliable technological partner for the evolution of our customers' business.

Thinking of you

At Eurobelt we believe that the most effective way to help our customers is to provide all the necessary information, based on our extensive experience, for the construction of internal transport systems.

3 / Industries

AUTOMOTIVE

In the automotive industry, as well as in auxiliary industries, numerous automated processes are carried out where a resistant and reliable transport system is essential.

Normally these are processes with long transport lines, capable of supporting products of great weight and volume to supply the large assembly lines. We will also find processes in which corrosive substances could be handled and with high temperatures. As well as product in different states, even highly malleable. In all these cases, the modular conveyor belt must be able to perform its function without any alteration. The E40 FLUSH GRID and E30 WAVE EMBEDDED series may be the most suitable solution to work in these environments.

On the other hand, sometimes, there are processes that also require the movement of the operators themselves along with the product while they carry out their activity. The conveyor belt is required to be a resistant and safe element. For this functionality we recommend the E40 NON-SLIP Series, equipped with a non-slip and non-Electrically Conductive surface.

This industry is especially sensitive to unscheduled stops due to the high cost that this would entail, therefore, a highly reliable transport system is required, with a very low breakdown rate and very short repair times. Plastic modular belts are a vitally element to meet these objectives.

Eurobelt recommends

E40 FLUSH GRID Tyre production lines Degreasing

E30 WAVE EMBEDDED

Tyre production lines Rubberised product

E40 NON SLIP

Transport of cars Transport of people

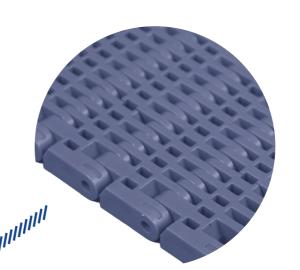
E40 FLAT TOP

Tyre production lines Elevators of residues

E30 FLAT TOP

Tyre production lines Elevators residuos Distributors

E50 KNURLED


Transport of people Rubber transport Tyre production lines Rubberised product

E930 FLUSH GRID Curved circuits

Tyre production lines Supply lines

Series E40 Flush Grid

POULTRY SECTOR

Eurobelt recommends

C12 FLUSH GRID Slicing lines

Packaging lines Metal detectors Reject by weight control

E20 FLUSH GRID

Slicing lines Packaging lines Metal detectors Reject by weight control

A24 FLAT TOP

Slicing lines Packaging lines Metal detectors Reject by weight control

E30 RAISED RIB

Egg grading Diverters Accumulation Packaging lines Line endings

B50 FLAT TOP

Slicina lines Quartering lines Chicken frames elevation Accumulation of containers

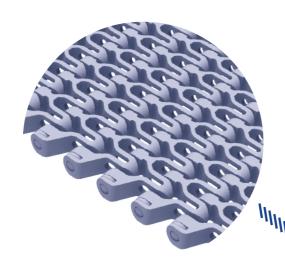
E930 FLUSH GRID

Curved circuits Spiral circuits Washers of containers Packaging lines

E80 PERFORATED

Quartering lines

The cutting and packaging processes of the poultry sector require a treatment in which asepsis, that is, preserving the product from infectious germs, is one of the fundamental


With the EUROBELT modular plastic belts, the cut meat can be transported both directly on the belt and deposited in trays or plastic boxes for delivery to the warehouse, with the sanitary guarantee offered by the ease of cleaning of our belts.

Our belts, being made of plastics with a minimum absorption rate, do not absorb odors or retain bacteriological contamination, after being properly washed.

The plastic materials with which these belts are made comply with international regulations for the manufacture of objects intended to come into contact with food. Regulations EU10/2011 and FDA CFR title 21 by FCN1847.

It is possible to work in low temperature environments, the product can even be frozen directly on our belts, with the advantages of lightness, flexibility and ease of defrosting of

When it comes to transporting delicate product with risk of breakage, such as eggs, we have accessory elements, side guards, flights, finger plates, to carry out transfers with maximum security avoiding sudden movements of the product.

Series E925 Flush Grid

BEVERAGE SECTOR

In the beverage packaging industry, numerous automated processes are carried out where a fast and reliable transport system is essential.

It is of vital importance that transfers are carried out in the safest way possible to avoid product breakage.

As they are small containers, the transfer of products very close takes on a very relevant importance, for which small pitch modular belts are

The modular belt C12 Flat Top with pitch 12 mm. allows product deliveries with turning diameters of up to 18 mm. With this Series, containers are transferred from one line to another, without the need to use "dead transfer plates" and can work at operating speeds greater than 75 meters/min.

Due to the very nature of the products to be transported and their rapid movements, these processes are especially noisy, so it is important to have a silent transport system, such as the one made using plastic modular belt, to avoid increasing the noise level.

Product accumulation situations also occur normally. In these cases, a belt that allows a certain slippage is required to avoid overturning or

Eurobelt Series E41 Raised Rib conveyor belt, given its configuration of projecting ribs, enables us to make product transfers by using finger plates.

Its reinforced ribs allow the lateral entry of jars, glass jars or containers in general, avoiding overturning and damages in the belt surface, together with its high capacity to transport very heavy loads. It is par excellence the conveyor belt for tunnel pasteurisers.

Eurobelt Series E31 has a 30 mm pitch and a mould-to-width configuration of 152.40 mm wide. It has been designed for carrying out dynamic lateral transfers of containers in perpendicular intersections of lines.

Its bevelled edge reduces the distance between the belts taking part in the transfer no need of using finger plates, dead plates or other transfer accessories.

E30 RAISED RIB

Eurobelt

C12 FLAT TOP

Palletisers

Height speed lines

Accumulation tables

Upcoming transfers

recommends

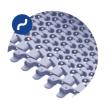
Casing Coolers Control and inspection Palletisers

E30 FLUSH GRID

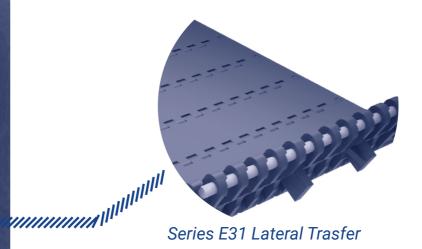
Casing Coolers Washers High-speed lines

E40 FLUSH GRID

Casing Coolers Washers


E41 RAISED RIB

Pasteurisers Accumulation tables


E50 FLUSH GRID

Casing Coolers Washers Filters of residues

E925 FLUSH GRID

Curved circuits with minimum turns Spirals Washers Supply lines

CANDY SECTOR

Eurobelt recommends

C12 FLUSH GRID Humidifiers Cooling lines

E20 FLAT TOP

Accumulation Hopper feeders Distributors Humidifiers Cooling lines Packaging

Humidifiers Cooling lines

Packaging

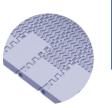
E20 FLUSH GRID

Metal detectors

A24 FLAT TOP

B50 FLAT TOP

Accumulation Hopper feeders Distributors Packaging Transport in general


E930 FLUSH GRID

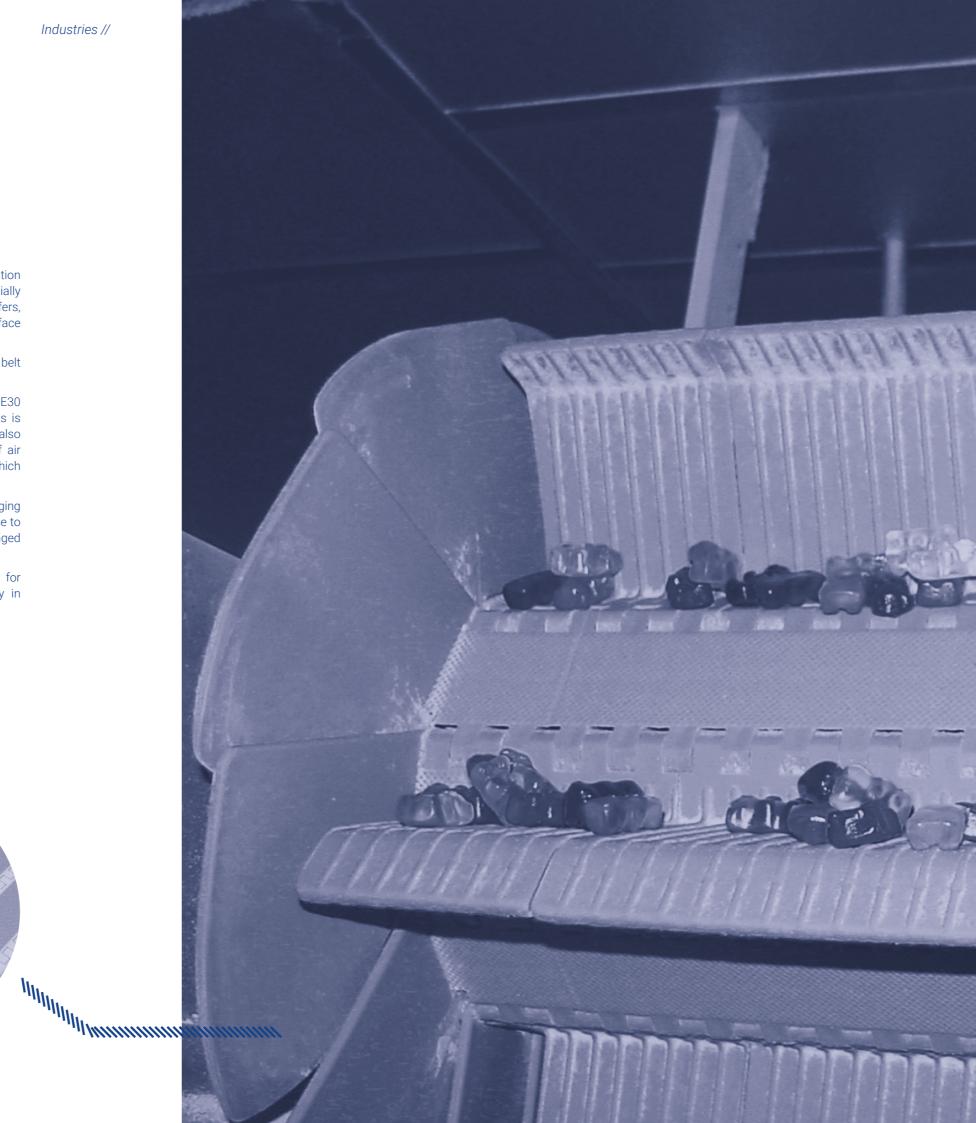
Curved circuits Spiral circuits Humidifiers Cooling lines

E30 WAVE EMBEDDED

Flevators Hopper feeders Product transport Clingy in general

Because they are small and highly sticky products, transportation in the candy and confectionary industry becomes especially complex. Modular belts capable of making close transfers, working at high speeds and above all, having a non-stick surface are required.

In addition, the residues that these products deposit on the belt must be removed quickly and reliably.


Modular non-stick surface belts are required, such as the E30 WAVE EMBEDDED model and also allow easy cleaning as is also the case with the FLUSH GRID models. The latter also allow, thanks to their large open surface, the passage of air and refrigerant liquids for those phases of the process in which product cooling is required.

The large Z-shaped elevators to feed the high weighing-bagging machines, built using a modular plastic belt allow great ease to perform maintenance by simplicity when replacing damaged modules, thus avoiding the consequent loss of productivity.

A significant role in this type of transport is reserved for accessories, such as flights and side guards, especially in processes with elevation and/or descent.

Eurobelt recommends

Production processes in the meat industry are especially delicate from a food safety point of view.

Cleanliness in production lines is undoubtedly the main objective that transport systems must meet. Therefore, in the food industry, and especially in the meat industry, all transport systems must be completely accessible in all their parts to carry out thorough cleaning.

EUROBELT plastic modular belts can be easily moved, removed, lifted, and even disassembled, in order to access the most difficult to clean parts.

Its design is specially conceived to facilitate this continuous cleaning, without the need to stop the production line. When rotating around the sprockets their joints open, thus facilitating their cleaning, in movement, by means of pressurized water jets, thus eliminating any remaining product or dirt.

The resistance of the belts to impacts from sharp objects, knives, punches, hooks, and other cutting tools, especially in cutting areas, will also be an essential feature. The penetration coefficient of the belt must be very low, in order to guarantee its durability and the non-transfer of small particles to the product being handled.

Our belts are made of materials that give them these characteristics and are also detectable in X-ray Metal detectors.

Cutting operations can be carried out on the conveyor belt itself, cold or hot, thanks to the wide range of temperatures allowed by the materials used.

E30 FLUSH GRID

Metal detectors Washers Plastic film wrapping Vacuum machines Transport of boxes

E50 FLUSH GRID

Liquid injection Plastic film wrapping Vacuum machines Freezing tunnels Transport of boxes

B50 FLAT TOP

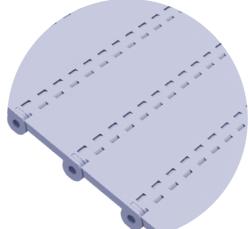
Elevators Cut and quartering lines Plastering areas Plastic film wrapping Vacuum machines

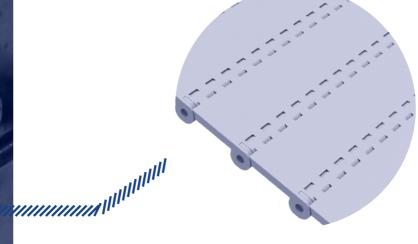
B50 FLUSH GRID

Washers Liquid injection Plastic film wrapping Vacuum machines Freezing tunnels

E80 FLAT TOP

Cut and quartering lines Plastering areas Plastic film wrapping Vacuum machines.


E930 FLUSH GRID


Curved circuits Washers Inspection lines Supply lines

A24 FLAT TOP

Metal detectors Transport and inspection lines

CANNING SECTOR

Eurobelt recommends

C12 FLUSH GRID

Selection tables Magnetic elevators Casing Washers Oil filling lines

E30 FLAT TOP

Selection tables Metal detectors Casing Accumulation tables Palletisers and Depalletisers

E30 FLUSH GRID

Selection tables Metal detectors Swan-necked elevators Casing Washers Accumulation tables

E40 FLUSH GRID

Boiling Casing Washers Palletisers Pasteurisers Accumulation tables

E50 FLUSH GRID

Boiling Freezers Metal detectors Swan-necked elevators Casing Acid towers

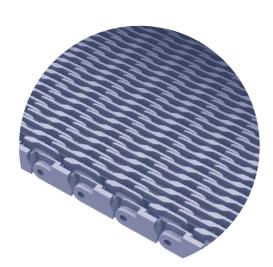
E925 FLUSH GRID

Curved circuits Spiral circuits Freezers Washers

E41 RAISED RIB

Casing Palletisers Accumulation tables

These are processes as diverse as blanching, cooking, vaporization, or pasteurization among others.


In all of them the conveyor belt is present supporting the products and environmental conditions, in some extreme cases, to which they are subjected. Therefore, it must be able to adapt to all of them without affecting their continuity.

The materials with which the belt has been manufactured must withstand a wide range of temperatures without altering its physical-chemical composition and maintaining its original characteristics in an unalterable way. Polypropylene HT is the most suitable material for this type of application.

Finally, the storage and shipping processes will arrive.

Also, for the latter, the most suitable band is required for each of them depending on other walls more related to resistance and available space.

As on other occasions, it will be vitally important to avoid unscheduled stops. Plastic modular belts are an exceptionally reliable conveying system, with a very low failure rate and very short repair times.

SECTOR

The processes of the fruit and vegetable industry place a heavy strain on transport systems in general, and on conveyor belts in particular.

We find these transport systems even in the field, in the collection of the product itself, located in mobile trailers where the first selection and collection are made. To later participate in each one of the subsequent elaboration processes, such as: washing, choosing, bleaching, cooking and subsequent cooling, bagging, and packaging.

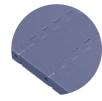
These products carry with them abrasive elements such as mud, stones, and sand, which causes a strong impact on the conveyor belt. EUROBELT in collaboration with its plastic raw material suppliers is continuously dedicated to the search for more abrasion-resistant materials in order to obtain the most cost-effective durability of our belts.

On the other hand, and especially in the case of food product, a transport system is required that allows a good cleaning of the product. Modular belts with a wide-open area facilitate this cleaning by pressurized water jets thanks to their good drainage.

The diverse types of materials used for these modular belts will allow processes to be carried out at different temperatures. From product cooking processes to freezing processes on the modular belt itself.

In some processes in this sector, acid treatments are used. EUROBELT modular belts are made of materials capable of working with this type of products.

recommends C12 FLUSH GRID


Metal detectors Sewage filter Hydrocooling

Eurobelt

E30 FLUSH GRID Metal detectors

Swan-necked elevators Casing Sewage filter Flooded pools Treatment with acids

E50 FLAT TOP

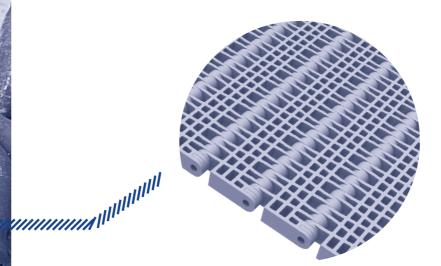
Metal detectors Swan-necked elevators Flooded pools

E50 FLUSH GRID

Whiteners Freezers Metal detectors Swan-necked elevators Hydrocooling Treatment with acids.

B50 FLAT TOP

Freezers Swan-necked elevators Hydrocooling


E930 FLUSH GRID Curves Circuits

Selection tables in closed circuit Treatment with acids

B50 FLUSH GRID

Swan-necked elevators Hydrocooling Metal detectors

DAIRY SECTOR

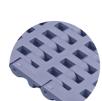
Eurobelt recommends

C12 FLUSH GRID

Whey wringers Metal detectors Cooling lines

E20 FLUSH GRID

Whey wringers Metal detectors Drying ovens Cooling lines Chemical treatment


E30 WAVE EMBEDDED

Cheese moulds elevators Metal detectors Cooling lines Chemical treatment

E50 FLUSH GRID

Brine pools Freezing Drying ovens Cooling lines Turning round of boxes Cheese presses Elevators

Brine pools Freezing Metal detectors Drying ovens Cooling lines Turning round of boxes

> **E925 FLUSH GRID** Curved circuits Spiral circuits Freezers Whey wringers Drying ovens

B50 FLUSH GRID

A24 FLAT TOP

Metal detectors Elevators Transport in general

In a sector as diverse as dairy we can find a wide variety of processes: brine ponds, cheese mold elevators, whey drainers, drying ovens, cooling lines, cheese presses and a long etcetera.

The best answer that EUROBELT can give to this industry is the wide variety of transport solutions adaptable to each of these processes. And the wide variety of materials, to adapt the modular belt to the environment in which it must work.

Belts with an open area, such as the Flush Grid or Open Grid models, are ideal for processes in which perfect drainage is required, such as brine ponds or whey drainers.

On the other hand, belts with a good grip and non-stick such as the Series E30 Wave Embedded would be the proposals for cheese mold elevators and other especially sticky products.

For those processes that require working at low temperatures and even in freezing processes, we would recommend our belts made of polyethylene capable of working at temperatures up to

These plastic materials comply with international regulations for the manufacture of objects intended to come into contact with food. Standards EU10/2011 and FDA CFR title 21 by FCN1847.

Series E30 Wave Embedded

PACKING SECTOR

Eurobelt recommends

In most industries, regardless of the sector to which they belong, it is very possible to find an area for packing and shipping the product. In this area, processes such as: Folding of boxes and cardboard, product classification, weighing, packaging, labeling and storage are carried out.

These are the last phases of the production process, where we already work with a finished product ready to be delivered to the customer. The handling of the product must be very careful not to damage it or alter its final finish. We must ensure that our transport system is reliable, safe in transfers and that in no case can it damage it or alter its final image.

It is guite common to find situations of product accumulation keeping the transport systems running. In these cases, the sliding of the product on the belt must be facilitated so as not to damage it or wear it on its lower part.

On the other hand, in circuits with elevation or descent we will need a belt that offers a certain grip so that the product does not slide and can continue its way.

It is necessary to have a wide range of different surfaces for each of the applications.

In expedition processes, response time is critical. We must meet customer expectations and we cannot take on long stops.

Due to its easy maintenance and low repair times, the plastic modular belt is the best solution for the transport of goods also in the shipping area.

C12 FLAT TOP Pile-up machines

Diverters Metal detectors Height speed lines

E20 FLUSH GRID

Pile-up machines Diverters Metal detectors Distributors Height speed lines

E30 FLAT TOP

Pile-up machines Diverters Metal detectors

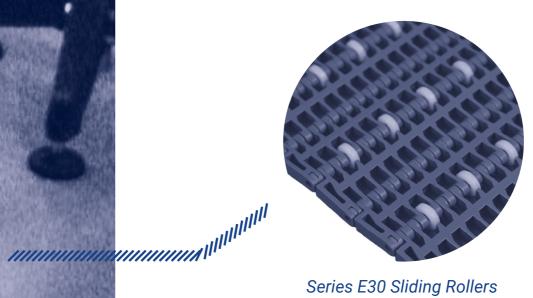
E40 SLIDING ROLLERS

Accumulation Supply lines Expedition lines

E40 FLAT TOP

Pile-up machines Pallet automatic loader Diverters Metal detectors Distributors

E930 FLUSH GRID


Curved circuits Flexible distributors Spirals elevación Packing closed circuits

E30 FLAT FRICTION

Elevators Descenders Positioners

Series E30 Sliding Rollers

PASTRY SECTOR

Eurobelt recommends

C12 FLUSH GRID

Loaders of tunnel ovens Metal detectors Cooling lines Selection tables

E20 FLUSH GRID

Loaders of tunnel ovens Metal detectors Cooling lines Selection tables

E30 FLUSH GRID

Accumulation boxes-containers Loaders of tunnel ovens Elevators with flights Cooling lines Selection tables


E50 FLUSH GRID

Metal detectors Elevators with flights Vertical elevators Cooling lines Selection tables


B50 FLUSH GRID

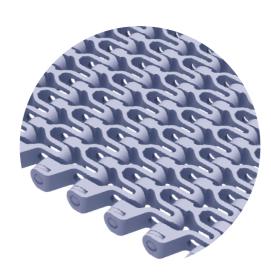
Metal detectors Elevators with flights Vertical elevators Cooling lines Selection tables

E925 FLUSH GRID

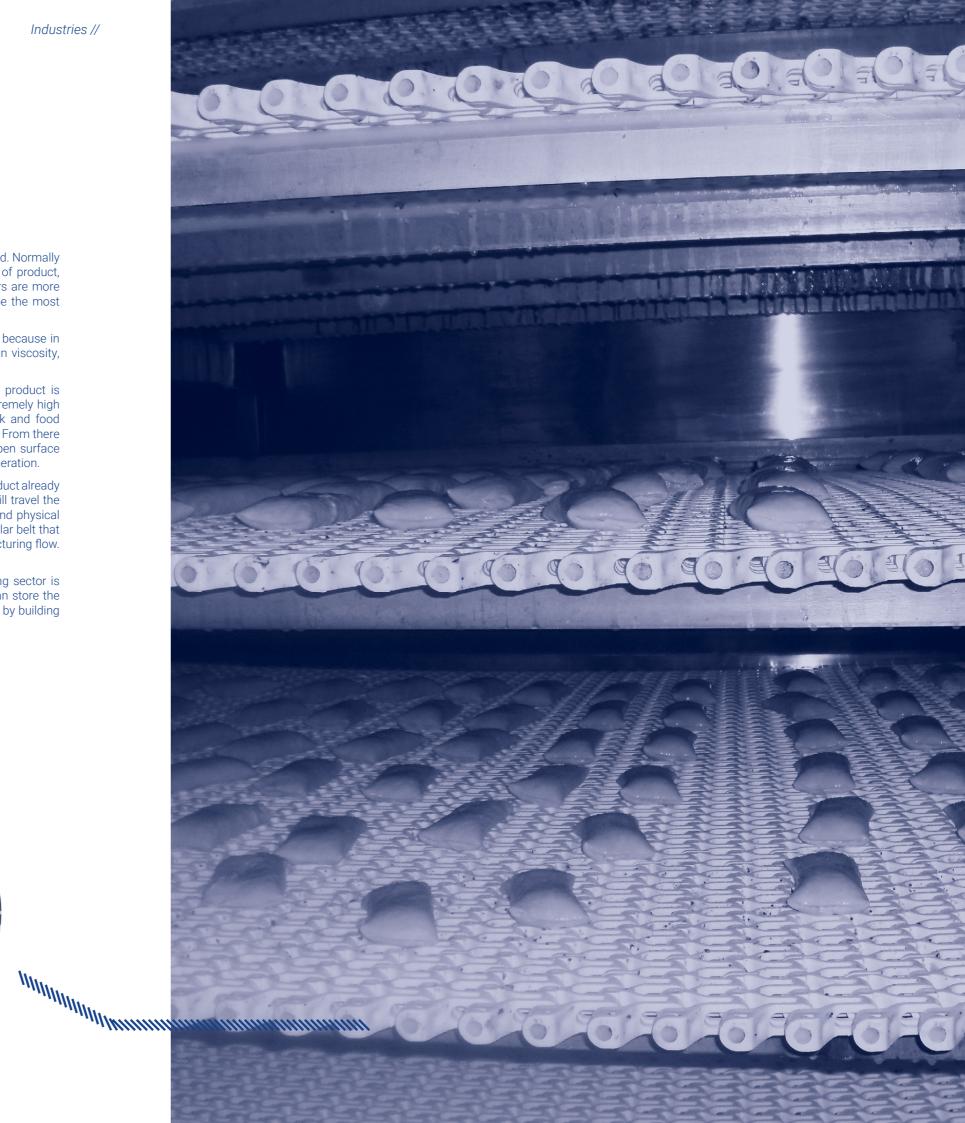
Curved circuits Cooling and freezing spirals Cooling lines

A24 FLAT TOP

Accumulation boxes-containers Elevators with flights Metal detectors Packaging area


The processes carried out in the pastry industry are very varied. Normally the product is small, cookies, chocolates, etc. For this type of product, a modular small-pitch belt is recommended so that transfers are more accurate. Both the C12 Series and the E20 Series would be the most recommended in these cases.

It is also important to have non-stick belts and accessories, because in many cases the product can present a texture with a certain viscosity, such as the E30 Embbeded and even E50 Knuled Series.


Both at the entrances and exits of the ovens, whether the product is transported in trays or directly on the belt, it receives an extremely high temperature jump, well then, Eurobelt has special non-stick and food materials, which can withstand temperatures of up to 230°C. From there we reach the cooling lines, where our modular belts with open surface Flush Grid are ideal for transporting the product allowing its aeration.

On other occasions, long conveyors will be necessary with product already finished and placed in their corresponding containers that will travel the entire length of manufacture at a height free of machines and physical impediments. That is when you need a highly resistant modular belt that doesn't need monitoring and avoids any stops in the manufacturing flow. We recommend our E30 Series on its various surfaces.

The problem of lack of space in this continuously expanding sector is common. That is why with our E925 and E930 Series we can store the production for several hours while cooling it in a small space by building spiral circuits.

FISH SECTOR

Surely the fish industry is where the most diverse industrial processes take place. These processes already begin on the high seas, on the ship itself. Then we will go through the auction rooms, the processing, and the canning industry.

In the first processes, especially in trawling, the product is mixed with other elements, salts, sands, and mud, which are very aggressive for the surfaces of the conveyor belts. It will be necessary to use models made of highly resistant and durable materials.

For these processes, our E50 Series with reinforced flights of 75 mm high is recommended, to minimize the breakage of these. Regarding materials, based on our extensive experience, we have developed systems with specific materials to work in a marine environment, which allow us to work at temperatures even of -50°C tond adapt to the temperatures of the freezing processes.

For the long distances of the auction rooms, we need modular belts of high resistance, capable of carrying heavy weights, usually on tight curved circuits. Here we would use the E50 and E930 Series respectively.

Once in the processing factories, conveyor belts are required to ensure extreme cleanliness and prevent product sticking. In this case, the Flush Grid and Open Grid surfaces will be the most appropriate.

For the canning industry, very versatile modular belts are required, we are going to find processes at different temperatures, cooking, pasteurization, cooling, freezing. In these processes, sanitary controls are very exhaustive. Particle detection equipment is available to prevent its transfer to food. The Eurobelt modular belts used in these processes are made of detectable materials.

Eurobelt recommends

C12 FLUSH GRID

Metal detectors Icing of frozen products Aseptic transport lines Macerating and mixing Drying tunnels

E20 FLUSH GRID

Metal detectors Icing of frozen products Aseptic transport lines Macerating and mixing applications Drying tunnels

E30 FLAT TOP

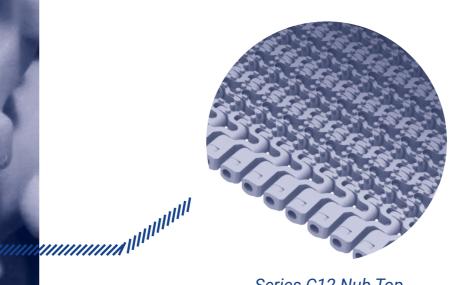
Metal detectors Elevators Aseptic transport lines Plastic film wrapping

E50 FLUSH GRID

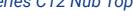
Desfreezing Metal detectors Flevators Washers Aseptic transport lines Freezing tunnels

B50 FLAT TOP

Metal detectors Elevators Aseptic transport lines Plastic film wrapping


E930 FLUSH GRID

Washers Aseptic transport lines Freezing tunnels Drying tunnels


B50 FLUSH GRID

Desfreezing Metal detectors Elevators Washers Aseptic transport lines Freezing tunnels

Series C12 Nub Top

Curved belts

SNACK SECTOR

Eurobelt recommends

C12 FLUSH GRID

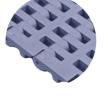
Lines for product preparation Inputs and outputs of the oven Metal detectors Cooling lines

E20 FLUSH GRID

Lines for product preparation Inputs and outputs of the oven Metal detectors Cooling lines

E80 FLAT TOP

Metal detectors Labelling lines Packaging lines


E50 FLUSH GRID

Lines for product preparation Inputs and outputs of the oven Metal detectors Cooling lines Salters

B50 FLUSH GRID

Lines for product preparation Inputs and outputs of the oven Metal detectors Cooling lines Salters

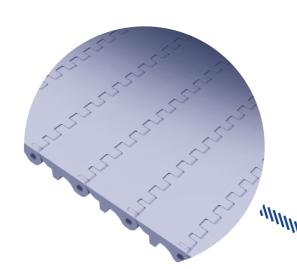
E925 FLUSH GRID

Curved circuits Washers Co oling spirals

B50 FLAT TOP

Elevators Metal detectors Transport in general

It is a very demanding sector in which the belts are subjected to very strong abrasion conditions.


In the first phase of the process, the reception, the product that arrives from the field usually arrives with sand and abrasive components that cause the belt to wear out prematurely. For this, Eurobelt recommends the use of our E50 Flush Grid Series with special materials for abrasion, which can be incorporated both in, the belt and the articulation rods, as well as their sprockets, prolonging the life of the transport systems.

Next, we move on to the peeling, washing, cutting and transport area prior to cooking. In these areas Eurobelt recommends the E50 Flush Grid Series, which, thanks to its large open area together with its high load capacity, makes it ideal for these processes.

Once in the cooking area where temperatures are sometimes high at the exits and entrances of the fryers/dryers, Eurobelt recommends the use of special materials for high temperatures, such as our Nylon HT.

In these process areas we will also have another conveyor from the exit of the seasoners to the elevators that take the product for packaging, in both Eurobelt recommends our B50 Flat Top Series, specially designed for cleaning, and arranged with pushes of multiple heights and geometries for the use of production.

In other areas such as baler outlets, Metal detectors, Palletisers, etc. ... in the final phase, Eurobelt has multiple solutions such as our A24. E30 or B50 Series.

Plastic modular belts are widely used in the wine sector both for the production process, bottling and movement of boxes.

The grape is a delicate product like other fruits that gives off "juices" that dirty the transport systems a lot, that is why the modular belt is the softest, most efficient, and hygienic means for its use during its elaboration. Furthermore, with the use of special plastics that resist moisture, temperatures, corrosion, wear, etc.... make that plastic belts will be durable systems and take care of the quality of your product.

In the part of the wine process, we will receive the grapes collected in the harvest from a towing to a reception conveyor that transfer them to the selection tables, also equipped with plastic modular belt.

Once selected applying the quality levels of each wine cellar, it is introduced into the warehouse normally through elevators, also with plastic modular belt equipped with straight flights/bent/ scoop, which later, by aerial conveyors is transferred until each tank, where the destemmed will be placed.

Another important area of the wine process is bottling.

Here modular belts are used in bottling lines for the transport of both empty and full bottles. Eurobelt has belts with very stable / flat surfaces, special for accumulation, minimum transfers, etc.... which makes this process fast and efficient.

Finally, for the movement from boxes to palletizers, they complement part of the automation of the end of line. Or initially in the reception of the empty bottles in their reverse depalletizing operation.

recommends E80 FLAT TOP

Infeed for stalk removing

Eurobelt

Elimination belts Elevators Selection tables

B50 FLAT TOP

Infeed for stalk removing Elimination belts Elevators Selection tables

C12 FLAT TOP

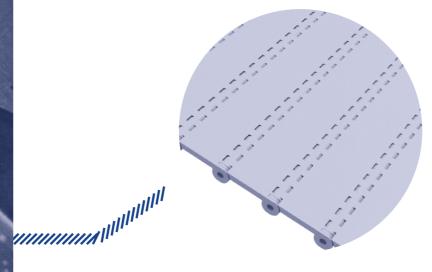
Bottles feeding Palletisers and depalletisers Reception hoppers Lines of different speeds

E41 RAISED RIB

Casing Palletisers and depalletisers Reception hoppers Pasteurisers

E30 FLAT TOP

Bottles feeding Reception hoppers Lines of different speeds


E30 FLAT FRICTION

Bottles feeding Non-slip conveyors

E930 FLUSH GRID

Curved circuits Washers

4 / Technical sheets

Series C12

With a 12 mm pitch, it enables to carry out transfers of small product at high speed with minimum turn diameters up to 18 mm, reducing polygonal action. On the other hand, when combined with a bigdiameter sprocket, the turn diameter is close to an almost perfect circumference.

Its open-link structure, with reinforcements shaping a kind of fork, provides a great load capacity. Rods in view together with an extraordinary open surface supply a great easiness for cleaning

Belt pitch	12 mm
Belt width	Multiples of 25 mm
Rod diameter	4,6 mm
Drive system	Hinge
Ø min direct rotation roller	18 mm
Ø min reverse rotation roller	75 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system	
		PP-Polypropylene	PP-Polypropylene	530	6,07	+1 to +104	W-B				
		PE-Polyethylene	PE-Polyethylene	300	6,38	-50 to +65	В	0%	00/	10	
	Flat Top	POM -Acetal	PP-Polypropylene	1450	8,61	+1 to +90	В		10 mm	Cap	
			PE-Polyethylene	1050	8,65	-40 to +65	В				

		PP-Polypropylene	PP-Polypropylene	980	4,60	+1 to +104	W-B			
	Flush Grid	PE-Polyethylene	PE-Polyethylene	550	4,75	-50 to +65	В	26 % Maximum [8.5 x 4.6] mm	imum 9 mm x 4.6]	Сар
		POM -Acetal	PP-Polypropylene	1950	6,50	+1 to +90	N - B			
		POW -Acetai	PE-Polyethylene	1400	6,54	-40 to +65	N - B	111111		

	PP-Polypropylene	PP-Polypropylene	980	4,51	+1 to +104	W-B	0.50		
Nub Ton	PE-Polyethylene	PE-Polyethylene	550	4,93	-50 to +65	В	26 % Maximum	Maximum 10,5 mm	Con
Nub Top	POM -Acetal	PP-Polypropylene	1950	6,53	+1 to +90	В	[8.5 x 4.6] mm		Cap
		PE-Polyethylene	1400	6,60	-40 to +65	В			

 $^{1}W = White G = Grey N = Natural B = Blue O = Black$ ¹Consult the complete colour chart: Page 176

Series C12

Flat Top

Its surface completely flat avoids the product fall. In addition, with a lower design without transversal ribs and rod in view, it offers ease of cleaning.

<u></u>

Flush Grid

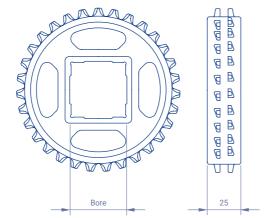
Nub Top

surface

C12 NUB TOP in its Flush Grid type, in addition to providing all its characteristics, is a non-stick modular belt intended for hihgly sticky. Its small teton products adhere to the belt

Its design with vertical, rounded openings and without recesses, together with its design with a rod in view, provides great drainage, as well as great ease of cleaning.

Series C12


Minimum quantity of

SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

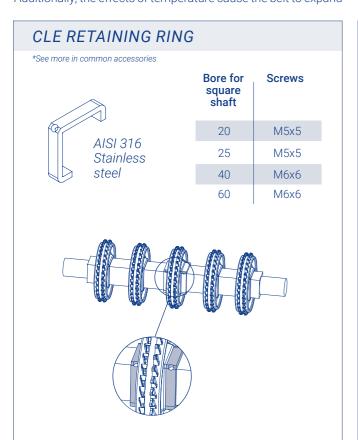
N° teeth Z	Ø Pitch	Bore for so	quare shaft	Hub width
		mm	inch	
11	42,59	20	3/4	25
16	61,51	20 - 25	0,8 - 1	25
20	76,70	40	1,5	25
26	99,55	40	1,5	25
31	118,61	40 - 60	1,5 - 2,5	25
40	152,94	40 - 60	1,5 - 2,5	25

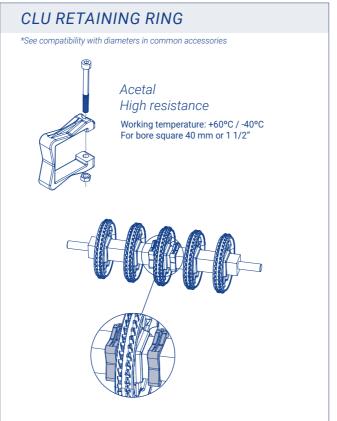
*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel

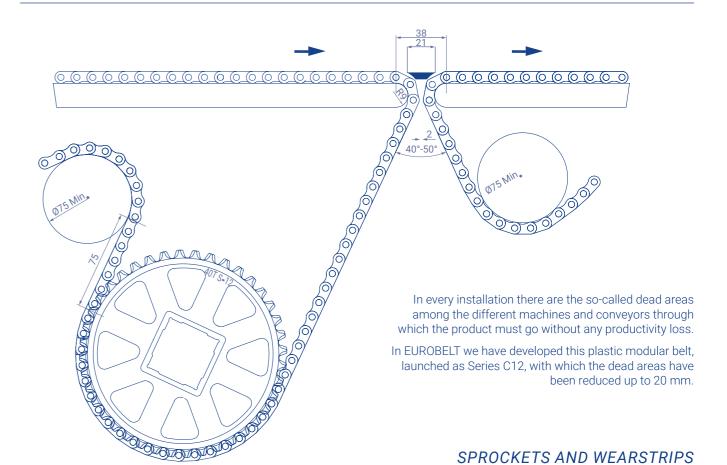
*check availability in other materials

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

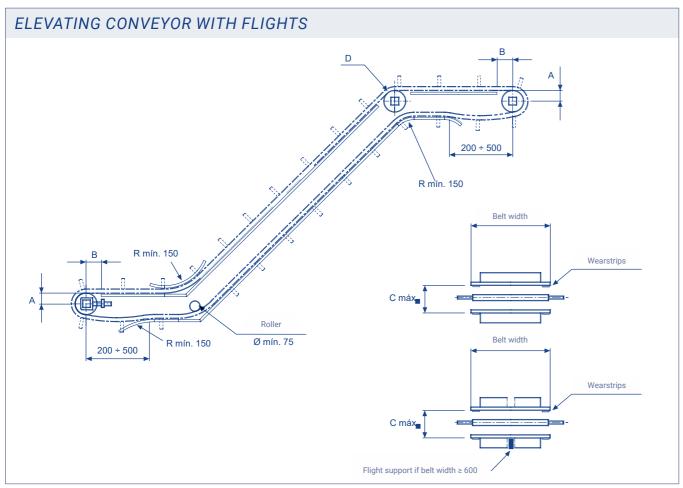

Additionally, the effects of temperature cause the belt to expand

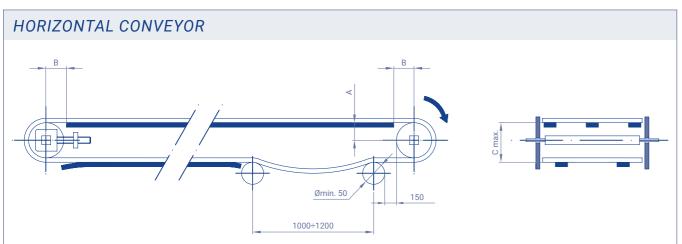
The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

CONSTRUCTION DATA

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Belt width (mm)
75 mm


This amount must always be odd.


To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

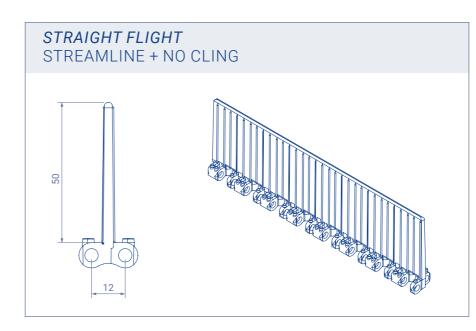
			quantity of	wearstrips			
	Belt nominal	width (mm)	sprockets per shaft	Transport way	Return way		
	50	75	1	2	2		
	100	225	3	2	2		
	250	375	5	3	2		
	400	525	7	4	3		
	550	675	9	5	3		
	700	825	11	6	4		
	850	975	13	7	4		
	1000	1125	15	8	5		
	1150	1275	17	9	5		
	1300	1425	19	10	6		
	1450	1575	21	11	6		
	1600	1725	23	12	7		
	1750	1875	25	13	7		
	1900	2025	27	14	8		
	2050	2175	29	15	8		

Series C12

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.


[D] If sprockets are used in the inflexion shaft, do not retain the central one.

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	Α	B max.	C max.
11	42,59	16	22	41
16	61,51	26	30	61
20	76,70	34	35	77
26	99,55	45	40	99
31	118,61	55	45	119
40	152,94	72	52	153

FLIGHTS

The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent,

Series C12

descent or accompaniment applications, avoiding that it slips along the belt.

Its non-stick sides has ribs that project over the surface to prevent the product from sticking.

Their edges are completely rounded to avoid any damage of the product. There is the possibility of lowering the standard height for special applications

Accessories	Height (h)	Materials
Straight flight Streamline + no cling	50	Polypropylene Polyethylene Acetal

TECHNICAL DATA: FLIGHTS

BELT WITH ONLY FLIGHTS

Indent = Multiples of 8 mm (Minimum of 24 mm) Distance between flights = Multiples of 40 mm

BELT WITH LONGITUDINAL CUTS

Flight longitudinal cut = increment of 8 mm (minimum 24

Series F12

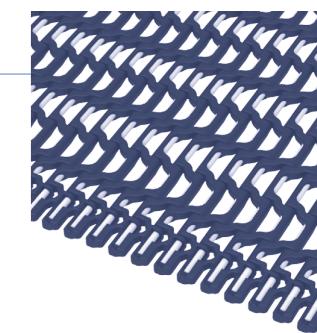
With a pitch of 12 mm and an open area of 43%, the new Eurobelt F12 is ideal for those applications in which we need to make very small transfers in applications with a need for large open area and cleaning, such as cooling lines, oven inlets and outlets, etc...

With a unique hinge rod retention system, the hinge rod is "clipped" at one end, preventing it from slipping out and thus avoiding possible snagging with the frame during movement.

The F12 series is designed with hygiene in mind, making it suitable for use in food processing industries, helping to prevent cross contamination and reducing the risk of food borne illnesses or, for example, in the pharmaceutical industry where aseptic requirements in conveyor lines are critical and necessary.

P	Belt pitch	12 mm
A	Belt width	Multiples of 25 mm
Ø III	Rod diameter	3,6 mm
	Drive system	Hinge
	Ø min direct rotation roller	12 mm
0	Ø min reverse rotation roller	75 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system				
		PP- Polypropylene	PP-Polypropylene	200	2,70	+5 to +104	В	43%						
			POM -Acetal	220	3,06	+5 to +90	В		7 mm	Clipped				
	Flush Grid	POM -Acetal	POM -Acetal	380	4,10	-40 to +90	В							
	riusii onu		PK-Polyketone	320	3,89	-30 to +80	В							
		PK-Polyketone	PK-Polyketone	260	3,54	-30 to +80	В							
		Nylon	Nylon	410	3,89	-40 to +120	N							


¹W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

Series F12

Flush Grid

Its design with fully open links, together with its manufacture with plastic materials that are totally aseptic, non-toxic, very non-porous and with very little liquid absorption, which comply with all the strict sanitary standards, are very often used in food processing plants to convey food products through various stages of their processing, from washing and peeling to their different elaboration processes and packaging.

SPROCKETS

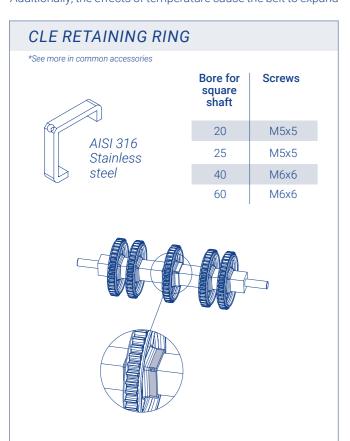
We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

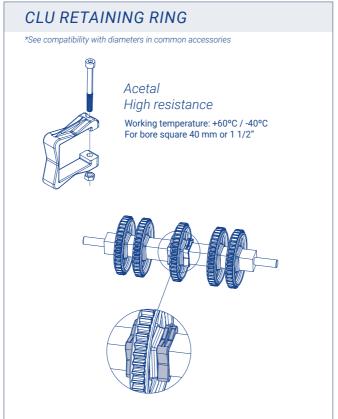
N° teeth Z	Ø Pitch	Bore for so	quare shaft	Hub width
		mm	inch	
13	50,98	20	-	25
20	77,99	40	1,5	25
38	147,74	40 - 60	1,5 - 2,5	25

*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel

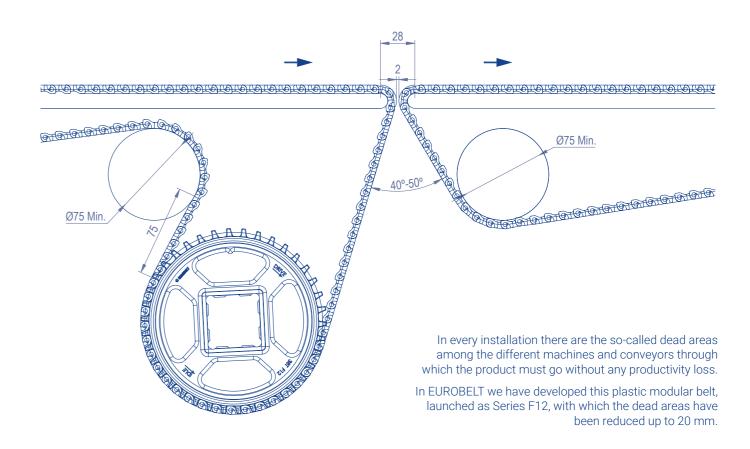
*check availability in other materials


Technical sheets //


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand


The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

Series F12

CONSTRUCTION DATA

SPROCKETS AND WEARSTRIPS

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

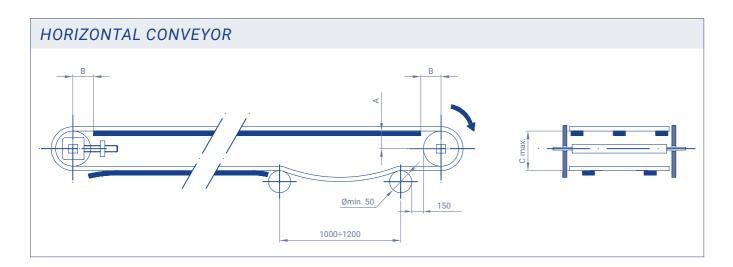
Minimum quantity -	Belt width (mm)	
Minimum quantity =	100 mm	-

This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

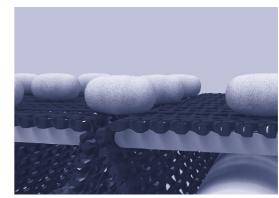
		Minimum quantity of	Minimum quantity of wearstrips		
Belt nominal	width (mm)	sprockets per shaft	Transport way	Return way	
350	400	5	4	2	
550	600	7	6	3	
750	800	9	8	4	
950	1000	11	10	5	
1150	1200	13	12	6	
1350	1400	15	14	7	
1550	1600	17	16	8	
1750	1800	19	18	9	
1950	2000	21	20	10	



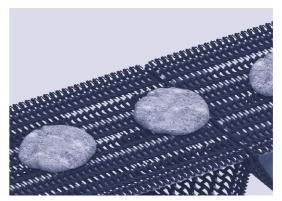
Technical sheets // // Technical sheets

Series **F12**

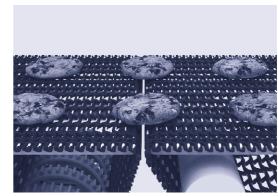
Series F12

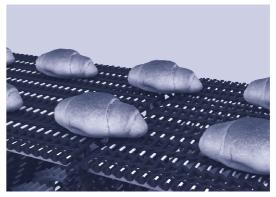

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.


[C] Distance between the sliding surface of the belt and the support of the return way.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.


N° of teeth Z	Ø Pitch	A	B max.	C max.
13	50,98	22	30	51
20	77,99	35	40	77
38	147,74	70	52	147


Series F12 Flush Grid Pre-cooked sector

Series F12 Flush Grid Meat sector

Series F12 Flush Grid Snack sector

Series F12 Flush Grid Pastry sector

0 0

0 0

Series **E20**

EUROBELT Series E20 with a pitch of 20 mm and widths in increments of 8 mm can adapt to almost every dimension. It is ideal for replacements which are complicated or having non-metric dimensions.

The traction is carried out in the central part of the modules; that is why it can be used as a bidirectional belt.

It enables transferences of product at high speeds with minimum turn diameters of about 30 mm.

Belt pitch	20 mm
Belt width	Multiples of 8 mm
Rod diameter	4,6 mm
Drive system	Central
Ø min direct rotation roller	26 mm
Ø min reverse rotation roller	100 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
		PP-Polypropylene	PP-Polypropylene	1000	5,75	+1 to +104	W - G - B			
	Flat Top	PE-Polyethylene	PE-Polyethylene	500	5,85	-50 to +65	N - B	0%	10	Con
	riat top	POM -Acetal	PP-Polypropylene	2150	8,31	+1 to +90	В	U%	10 mm	Cap
		POW -Acetal	PE-Polyethylene	1800	8,35	-40 to +65	В			
		PP-Polypropylene	PP-Polypropylene	1000	4,20	+1 to +104	W - G - B			
	Flush Grid	PE-Polyethylene	PE-Polyethylene	500	4,57	-50 to +65	N - B	32%	9 mm	Сар
	riusii dilu	DOM Apotal	PP-Polypropylene	2150	6,32	+1 to +90	В	Maximum [4 x 6] mm		
		POM -Acetal	PE-Polyethylene	1800	6,36	-40 to +65	В			
*		PP-Polypropylene	PP-Polypropylene	1000	6,17	+1 to +104	G	32%		
	Raised Rib POM -Acet	DOM Apotal	PP-Polypropylene	2150	9,42	+1 to +90	В	Maximum	15 mm	Cap
		POW -Acetai	PE-Polyethylene	1800	9,45	-40 to +65	В	[4 x 6] mm		
*		PP-Polypropylene	PP-Polypropylene		*	+1 to +104	W - G - B			
	Trian Friction	PE-Polyethylene	PE-Polyethylene	On Danwood	*	-50 to +65	N - B	*	*	Cap
	Тор	POM -Acetal	PP-Polypropylene	On Request	*	+1 to +90	В			
		F OIVI -ACEtal	PE-Polyethylene		*	-40 to +65	В			
*		PP-Polypropylene	PP-Polypropylene	1000	*	+1 to +104	В			
	Trian	PE-Polyethylene	PE-Polyethylene	500	*	-50 to +65	В	0%	*	Cap
	IIIdii	POM -Acetal	PP-Polypropylene	2150	*	+1 to +90	В	0 %		Cap
		POW -Acetal	PE-Polyethylene	1800	*	-40 to +65	В			
47		PP-Polypropylene	PP-Polypropylene		*	+1 to +104	W - G - B			
	Cliding Dallana	PE-Polyethylene	PE-Polyethylene	On Paguast	*	-50 to +65	В	0%	*	0
	Sliding Rollers	POM -Acetal	PP-Polypropylene	On Request	*	+1 to +90	В	0%		Cap
		- OWI Acctur	PE-Polyethylene		*	-40 to +65	В			

 $^{1}W = White G = Grey N = Natural B = Blue O = Black$

¹Consult the complete colour chart: Page 176 * consult technical department

47	Special qua

Special	Contact areas	Indent	Spaces between rubber rows	Rubber hardness	Spaces between Trian rods	Sliding rollers width	Sliding rollers material	Sliding rollers diameter	Spaces between sliding rollers
Raised Rib	30%								
Trian Friction Top		Multiples of 8 mm Minimum of 24 mm		Shore A60	Multiples of 40mm				
Trian		Multiples of 8 mm Minimum of 16 mm			Multiples of 20mm				
Sliding Rollers						4,9 mm	Acetal	15 mm	Multiples of 20 mm

Series **E20**

Due to a closed surface configuration, is the suitable

conveyor belt for those applications in which it is not necessary any drainage through the belt and/or the product to be transported is small.

Flush Grid

Flat Top

Is ideal for applications in any accumulation of

Trian Friction Top

Designed with modules made of

containers.

This conveyor belt has two adhering to the belt

its surface that rotates in moments of accumulation of load, prevent crushing and base wear of the product. This conveyor belt

which drainage through the belt is required, avoiding particles on its surface. Easy cleaning due to the possibility of applying water under pressure through

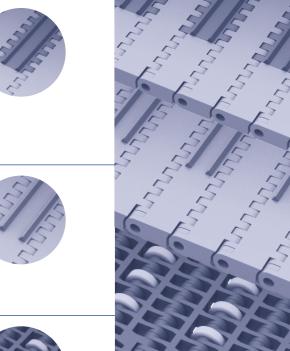
Is a conveyor belt designed to make product transfers by using finger plates. Both the grille-shaped configuration and the 32% open area make it suitable for applications in which drainage through the belt is required, and/or applications in which a smaller surface of contact is needed to prevent the product from adhering to the belt

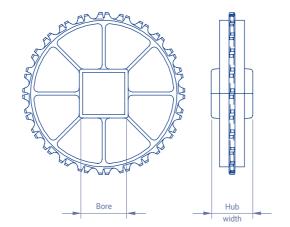
rubber that are inserted into the others in order to achieve good friction characteristics. They have transversally arranged triangular elevations that achieve maximum grip and ease of cleaning. Special for elevators and descenders of boxes or

Trian

transversal edges between the ends to reduce the contact surface and thus prevent it from

Sliding Rollers With rollers inserted in





SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

N° teeth Z	Ø Pitch	Bore for so	Hub width	
		mm	inch	
8	52.5	20	3/4	24
16	102.5	40	1.5	40
24	153.5	40 - 60	1.5	40

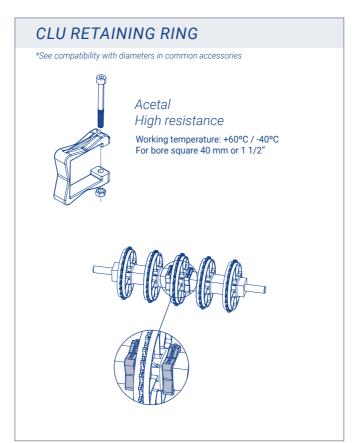
*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

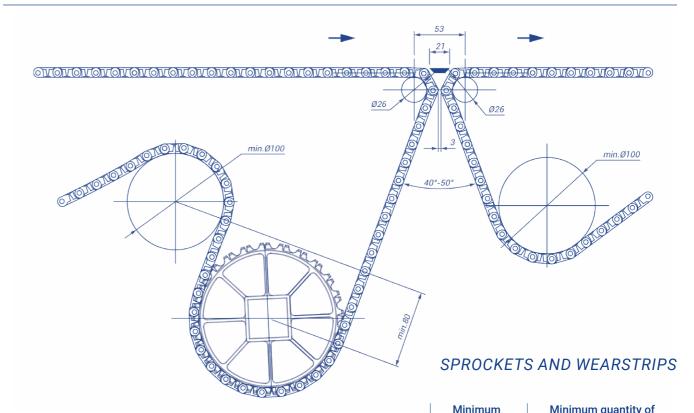
WITHOUT KEYWAY

Technical sheets //

RETAINING RINGS


Eurobelt retaining rings are used to secure the central gear on or contract. shaft and avoiding lateral displacements of the belt.

the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the


Additionally, the effects of temperature cause the belt to expand

See more in common accessories	Bore for square shaft	Screws
A101.016	20	M5x5
AISI 316 Stainless	40	М6х6
steel	60	М6х6

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

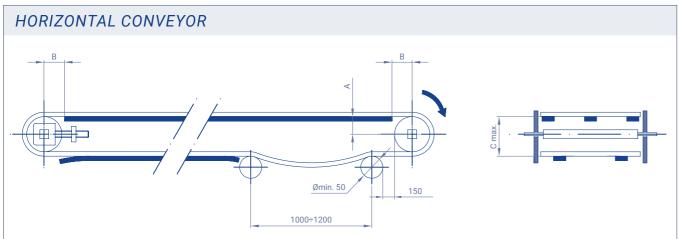
CONSTRUCTION DATA

In every installation there are the so-called dead areas among the different machines and conveyors through which the product must go without any productivity loss.

In EUROBELT we have developed this plastic modular belt, launched as Series E20, with which the dead areas have been reduced up to 20 mm.

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Minimum quantity =	Belt width (mm)
	70 mm


This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

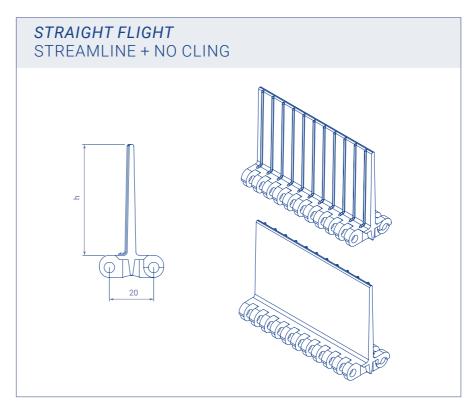
Belt nominal width (mm) shaft Transport way Return way 32 104 1 2 2 112 216 3 2 2 224 360 5 3 2 368 504 7 4 2 512 684 9 5 3 656 792 11 6 3 800 936 13 7 4 944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 <t< th=""><th colspan="2">Relt nominal</th><th>width (mm)</th><th>quantity of sprockets per shaft</th><th colspan="3">Minimum quantity of wearstrips</th></t<>	Relt nominal		width (mm)	quantity of sprockets per shaft	Minimum quantity of wearstrips		
112 216 3 2 2 224 360 5 3 2 368 504 7 4 2 512 684 9 5 3 656 792 11 6 3 800 936 13 7 4 944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		beit norminal	width (min)	Silait	Transport way	Return way	
224 360 5 3 2 368 504 7 4 2 512 684 9 5 3 656 792 11 6 3 800 936 13 7 4 944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		32	104	1	2	2	
368 504 7 4 2 512 684 9 5 3 656 792 11 6 3 800 936 13 7 4 944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		112	216	3	2	2	
512 684 9 5 3 656 792 11 6 3 800 936 13 7 4 944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		224	360	5	3	2	
656 792 11 6 3 800 936 13 7 4 944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		368	504	7	4	2	
800 936 13 7 4 944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		512	684	9	5	3	
944 1080 15 8 4 1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		656	792	11	6	3	
1088 1224 17 8 4 1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		800	936	13	7	4	
1232 1368 19 9 5 1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		944	1080	15	8	4	
1376 1512 21 10 5 1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		1088	1224	17	8	4	
1520 1656 23 11 6 1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		1232	1368	19	9	5	
1664 1800 25 12 6 1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		1376	1512	21	10	5	
1808 1944 27 13 7 1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		1520	1656	23	11	6	
1952 2088 29 14 7 2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		1664	1800	25	12	6	
2096 2232 31 15 8 2240 2376 33 16 8 2384 2520 35 17 9		1808	1944	27	13	7	
2240 2376 33 16 8 2384 2520 35 17 9		1952	2088	29	14	7	
2384 2520 35 17 9		2096	2232	31	15	8	
		2240	2376	33	16	8	
2528 2664 37 18 9		2384	2520	35	17	9	
		2528	2664	37	18	9	

ELEVATING CONVEYOR WITH FLIGHTS 200 ÷ 500 Wearstrips Ø mín. 75 200 ÷ 500 Wearstrips Flight support if belt width ≥ 600

[A] Distance between the sliding surface of the belt and the centre of the shaft.

B Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.

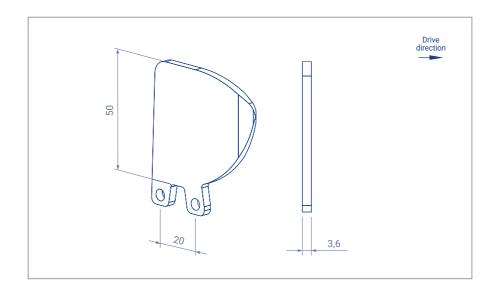

[D] If sprockets are used in the inflexion shaft, do not retain the

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	A	B max.	C max.
8	52,20	20	28	65
16	102,5	46	50	110
24	153,5	72	65	155

FLIGHTS



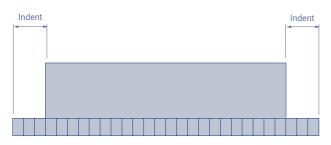
The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.

They have two faces, streamline and no cling, both can be used in one way or another one according to the need. Its non-stick side has ribs that project over the surface to prevent the product from sticking. Their edges are completely rounded to avoid any damage of the product. There is the possibility of lowering the standard height for special applications.

Accessories	Height (h)	Materials
Straight flight Streamline + no cling	25 50	Polypropylene Polyethylene Acetal

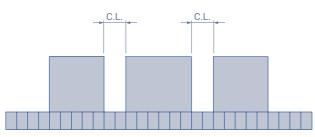
SIDE GUARDS

The side guards are plastic accessories that act as wingers while accompanying the movement, they are inserted


into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

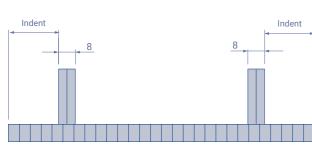
Possibility of lowering the standard height for special applications

Height (h)	Materials
50	Polypropylene Polyethylene Acetal

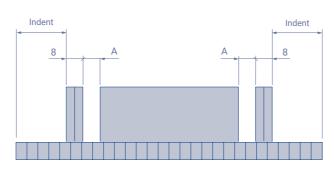

TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

BELT WITH ONLY FLIGHTS

Indent = Multiple of 8 mm (minimum of 24 mm) Distance between flights = Multiple of 40 mm


BELT WITH LONGITUDINAL CUTS

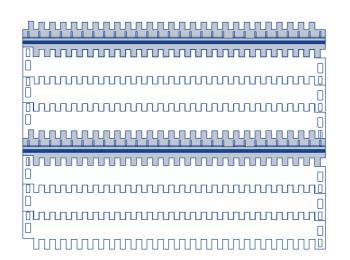
Technical sheets //


Flight longitudinal cut = Multiple of 8 mm (minimum of 24 mm)

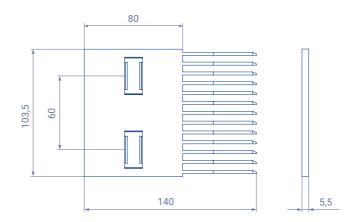
BELT WITH ONLY SIDE GUARDS

Indent = Multiple of 8 mm (minimum of 16 mm) Multiple of 8 + 4 mm (minimum of 20 mm)

BELT WITH FLIGHTS AND SIDE GUARDS



Indent = Multiple of 8 mm (minimum of 16 mm). A = 8 mm Multiple of 8 + 4 mm (minimum of 20 mm). A = 4 mm

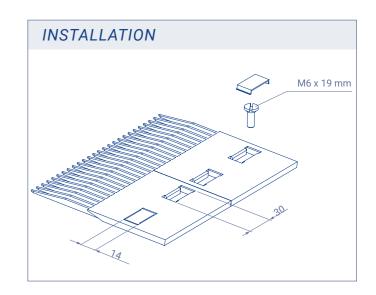

BELT WITH ZIG-ZAG FLIGHTS

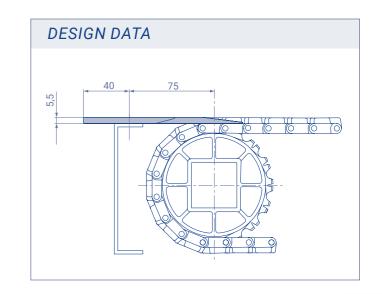
booming and a second se

BELT WITH FLIGHTS WITHOUT INDENT

FINGER PLATES

They have been designed to be used with the Raised Rib belt i	n
applications of intersection of lines in which it is necessary to	0
transfer the product by means of finger plates.	


The finger plates are manufactured in nylon and acetal. They have 13 teeth that hide among the projecting ribs


of the belt, allowing the constant flow of product as the belt is engaged. They avoid the use of conventional dead plates and consequently the problems by stumbling and fall of the product.

They have two fastening holes that enable little displacements to achieve a better coupling with the belt. Those holes are located so that they reduce to the minimum the vibrations owing to the turn of the belt over the sprockets.

The finger plates can be easily installed in the structure of the conveyor putting a screw in each hole.

Material /Colours	N° of spikes	N° of fasteners
Nylon / black	13	2
Acetal / grey	13	∠

Series A24

Two of the most important concerns in the market for conveyor belts are: to obtain a sure traction and easy cleaning. At EUROBELT we develop the A24 Series, thinking that these two technological challenges be rigorously met.

The A24 Series has a direct drive on two inclined sides and with a large contact surface with the sprocket, which optimum pushing conditions and make it one of the belts with the most reliable traction on the market.

The special design of this Series makes it easy for us to access the parts that are difficult to clean. That is why it has been conceived with open ends, work and return surfaces completely smooth, openings in the articulation areas and sprockets with large rounded holes that make easy the most scrupulous cleaning.

P	Belt pitch	24 mm
A	Belt width	Multiples of 10 mm
N ¹⁰	Rod diameter	4,6 mm
	Drive system	Central
	Ø min direct rotation roller	35 mm
0	Ø min reverse rotation roller	100 mm

Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
	PP-Polypropylene	PP-Polypropylene	1283	5,80	+1 to +104	W-B			
Flat Ton	PE-Polyethylene	PE-Polyethylene	350	6,14	-50 to +65	В	0%	11 2222	Con
Flat Top	POM -Acetal	PP-Polypropylene	2000	8,75	+1 to +90	В	0%	11 mm	Cap
		PE-Polyethylene	1699	8,78	-40 to +65	В			

		PP-Polypropylene	PP-Polypropylene	753	4,72	+1 to +104	W - B		n 11 mm Cap	
	Flush Grid	PE-Polyethylene	PE-Polyethylene	260	4,99	-50 to +65	* ¹	30%		Cap
	Flusii Gilu	POM -Acetal	PP-Polypropylene	1850	7,05	+1 to +90	В	[9,5 x 3] mm		
			PE-Polyethylene	1414	7,07	-40 to +65	В			

.1		PP-Polypropylene	PP-Polypropylene	950	6,53	+1 to +104	*1	30%		
	Raised Rib	POM -Acetal	PP-Polypropylene	1850	9,86	+1 to +90	*1	Maximum	17 mm	Cap
			PE-Polyethylene	1700	9,89	-40 to +65	* ¹	[9,5 x 3] mm		

¹W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

Special qualities

	Contact areas	Indent	Spaces between rubber rows	Rubber hardness	Spaces between Trian rods	Sliding rollers width	Sliding rollers material	Sliding rollers diameter	Spaces between sliding rollers
Raised Rib	30%								

Series A24

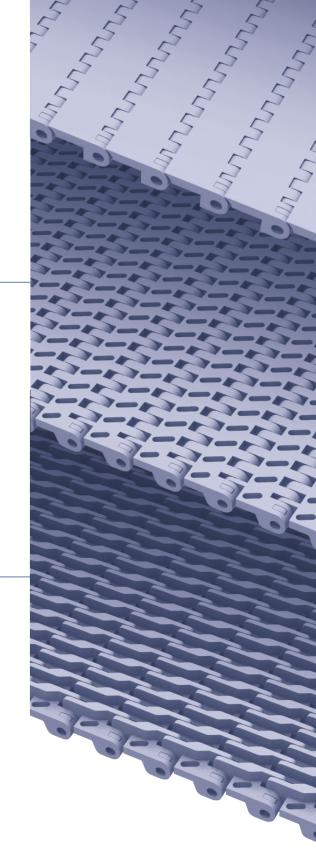
070

Flat Top

With a surface completely smooth, both its bottom like higher, allows us lead the water from an end to the other and so remove dirt from an easy and fast way. Their completely open belt edges increase the cleaning efficiency and allow us to work in the best sanitary

Flush Grid

It has oval perforations of 9.5 x 3 mm which endow it with a 30% open area. This model is used in light applications and when it is necessary drainage of liquids or airflow, like defrosting or drying of



Series A24

Minimum quantity of

wearstrips

SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

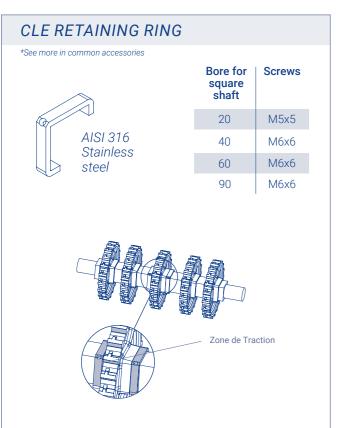
Nº teeth Z	Ø Pitch	Bore for square shaft		Hub width
		mm	inch	
7	55,31	20	-	20
13	100,25	40	1,5	40
20	153,41	40-60	1,5	40
25	191,48	40-60-90	1,5	40

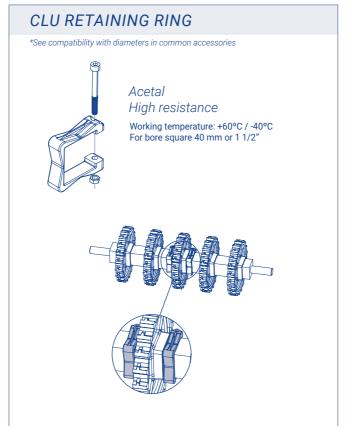
*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

Technical sheets //

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

CONSTRUCTION DATA

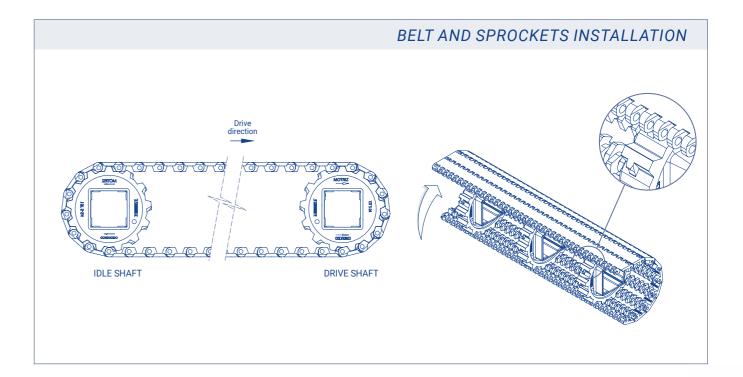
SPROCKETS AND WEARSTRIPS

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Minimum quantity =	Belt width (mm)
	100 mm

This amount must always be odd.

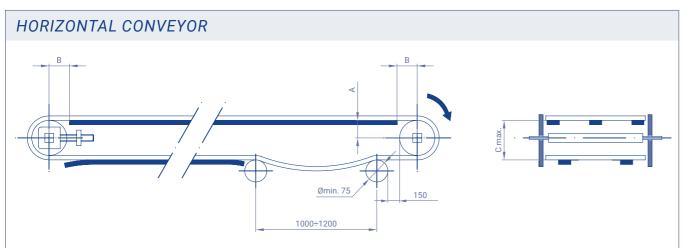
To calculate the quantity of supports, the weight of the product to be transported must be taken into account.


The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

Belt nominal v			Sprockets				
		l width (mm)	per shaft	Transport way	Return way		
	40	100	1	2	2		
	110	300	3	2	2		
	310	500	5	4	3		
	510	700	7	6	4		
	710	900	9	8	5		
	910	1100	11	10	6		
	1110	1300	13	12	7		
	1310	1500	15	14	8		
	1510	1700	17	16	9		
	1710	1900	19	18	11		
	1,910	2100	21	20	12		
	2110	2300	23	22	13		
	2310	2500	25	24	14		
	2510	2700	27	26	15		

Minimum

quantity of


sprockets

Technical sheets //

Series A24

ELEVATING CONVEYOR WITH FLIGHTS D 200 + 500 R min. 150 R min. 150 Belt width Wearstrips C max Flight support if belt width ≥ 600

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

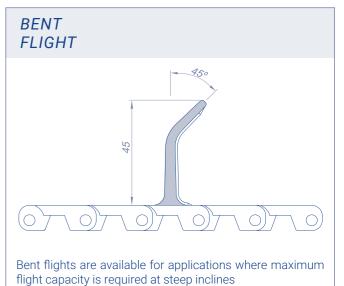
[C] Distance between the sliding surface of the belt and the support of the return way.

[D] If sprockets are used in the inflexion shaft, do not retain the central one.

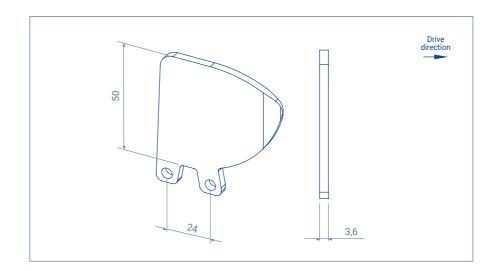
[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	А	B max.	C max.
7	55,31	22	25	55
13	100,25	46	40	100
20	153,41	72	50	155
25	191,48	91	60	195


FLIGHTS

Accessories	Height (h)	Materials
Straight flight Streamline + no cling	25 50	Polypropylene Polyethylene Acetal
Bent flight	45	Polypropylene Polyethylene Acetal


The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.

They have two faces, streamline and no cling, both can be used in one way or another one according to the need. Its non-stick side has ribs that project over the surface to prevent the product from sticking. Their edges are completely rounded to avoid any damage of the product. There is the possibility of lowering the standard height for special applications.

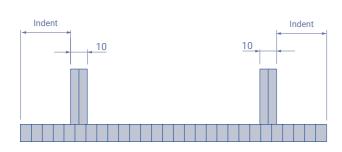
SIDE GUARDS

The side guards are plastic accessories that act as wingers while accompanying the movement, they are inserted

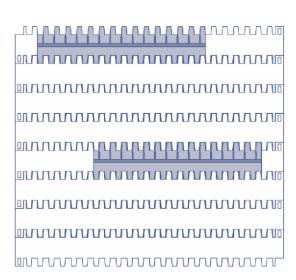
into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

Possibility of lowering the standard height for special applications

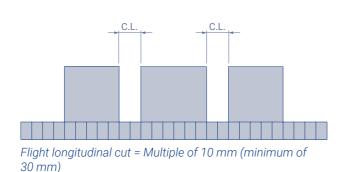
Height (h)	Materials
50	Polypropylene Polyethylene Acetal


TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

BELT WITH ONLY FLIGHTS

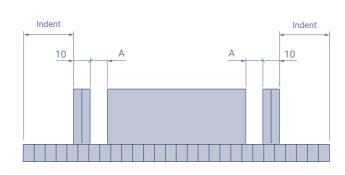

Indent = Multiple of 10 mm (minimum of 30 mm) Distance between flights = Multiple of 48 mm

BELT WITH ONLY SIDE GUARDS

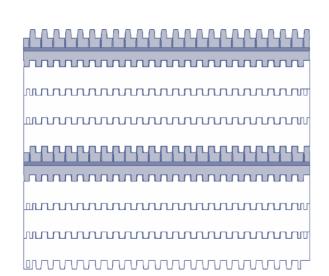


Indent = Multiple of 10 mm (minimum of 30 mm) Multiple of $10 + 5 \, \text{mm}$ (minimum of $25 \, \text{mm}$)

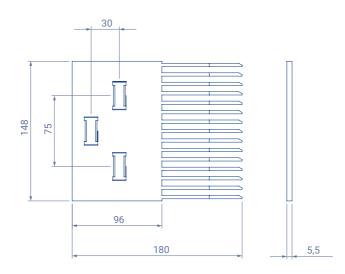
BELT WITH ZIG-ZAG FLIGHTS



BELT WITH LONGITUDINAL CUTS


Technical sheets //

BELT WITH FLIGHTS AND SIDE GUARDS

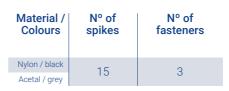


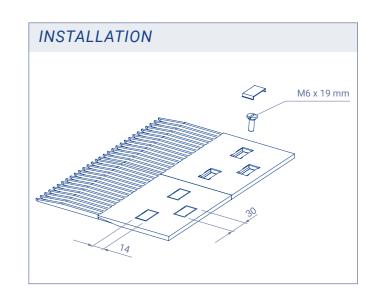
Indent = Multiple of 10 mm (minimum of 30 mm). A = 10 mm Multiple of 10 + 5 mm (minimum of 25 mm). A = 5 mm

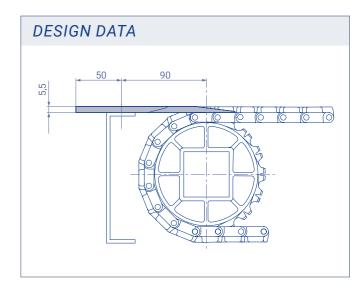
BELT WITH FLIGHTS WITHOUT INDENT

FINGER PLATES

applications of intersection of lines in which it is necessary to
transfer the product by means of finger plates.
The former plates are reconstructioned in order and exact Three


They have been designed to be used with the Raised Rib belt in


The finger plates are manufactured in nylon and acetal. They have 13 teeth that hide among the projecting ribs


of the belt, allowing the constant flow of product as the belt is engaged. They avoid the use of conventional dead plates and consequently the problems by stumbling and fall of the product.

They have two fastening holes that enable little displacements to achieve a better coupling with the belt. Those holes are located so that they reduce to the minimum the vibrations owing to the turn of the belt over the sprockets.

The finger plates can be easily installed in the structure of the conveyor putting a screw in each hole.

With an intermediate pitch of 30 mm., is specially indicated for conveying and elevating small-medium product size, being one of the most standar belt of the market.

The traction is made in the central part of the modules, so that it can be used as a bi-directional belt.

Its extraordinary adaptability, combined with its great resistance, allows reaching important conveyor lengths.

Belt pitch	30 mm
Belt width	Multiples of 10 mm
Rod diameter	4,6 mm
Drive system	Central
Ø min direct rotation roller	45 mm
Ø min reverse rotation roller	100 mm

Technical sheets //

Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
	PP-Polypropylene	PP-Polypropylene	1100	5,31	+1 to +104	W - G - B			
Flat Top	PE-Polyethylene	PE-Polyethylene	600	5,62	-50 to +65	N - B	00/	10 mm	0
гіат тор	DOM A L	PP-Polypropylene	2250	7,93	+1 to +90	В	0%	10 mm	Cap
	POM -Acetal	PE-Polyethylene	1920	7,96	-40 to +65	В			
	PP-Polypropylene	PP-Polypropylene	1000	5,01	+1 to +104	W-B			
Perforated	PE-Polyethylene	PE-Polyethylene	600	5,20	-50 to +65	N	17%	10 mm	Cap
Flat Top	POM -Acetal	PP-Polypropylene	2250	7,33	+1 to +90	В	[8 x 2] - [5 x 2] mm		
		PE-Polyethylene	1920	7,36	-40 to +65	В			
	PP-Polypropylene	PP-Polypropylene	1100	3,71	+1 to +104	W - G - B			
Flush Grid	PE-Polyethylene	PE-Polyethylene	600	4,00	-50 to +65	N - B	41%		
Flush Grid		PP-Polypropylene	2250	5,60	+1 to +90	В	Maximum [8 x 7,7] mm	9 mm	Cap
	POM -Acetal	PE-Polyethylene	1920	5,63	-40 to +65	В			
	PE-Polyethylene	PP-Polypropylene	1100	3,93	+1 to +104	W-B			
0 011	PE-Polyethylene	PE-Polyethylene	600	4,24	-50 to +65	N	41%	0	0
Open Grid		PP-Polypropylene	2250	5,88	+1 to +90	ъВ	Maximum [8 x 7,7] mm	9 mm	Cap
	POM -Acetal	PE-Polyethylene	1920	5,91	-40 to +65	₽₿			

7		PP-Polypropylene	PP-Polypropylene	1100	5,44	+1 to +104	G	41%		
	Raised Rib	POM -Acetal	PP-Polypropylene	2250	8,30	+1 to +90	В	Maximum	15 mm	Cap
			PE-Polyethylene	1920	8,33	-40 to +65	В	[8 x 7.7] mm		

 ^{1}W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

Special qualities

	ontact ireas	Indent	Spaces between rubber rows	Belt material	Temperature limit (°C)		Sliding rollers width	Sliding rollers material	Sliding rollers diameter	Spaces betweer sliding rollers
Raised Rib	29%									

Flat Top

Closed surface configuration, is the suitable conveyor belt for those applications in which it is not necessary any drainage through the belt and/or the product to be conveyed is small. Completely smooth surface to avoid product overturns and the resulting blockage of the line.

Perforated Flat Top

Open area of 17%, a completely smooth surface, and grille-shaped small straight holes without structural obstacles. This is the suitable conveyor belt for those applications in which drainage through the belt is desired and the product to be conveyed is small.

Flush Grid

Configuration in form of grille-shaped with a 41% open area and a completely smooth surface. This conveyor belt is ideal for applications in which drainage through the belt is needed, avoiding accumulation of any particle on its surface.

Open Grid

It is used in product-inbulk processes in inclined planes whenever the use of conventional flights is not possible. Their mini-flights reduce the contact surface between product and belt, decreasing the adherence in processes like fish glazing and conveyance of frozen fish

Raised Rib

By its configuration of projecting ribs, enables us to make product transfers by using finger plates. The central reinforcement of the ribs increases durability of them and reducing also, the distance between them, thus allowing the entrance of cans, glass jars or containers in general, avoiding their overturning, reducing overturning of line, as well as anu damage in the belt surface and sprockets, and continuous stops of the lines process.

With an intermediate pitch of 30 mm., is specially indicated for conveying and elevating small medium product size, being one of the most standar belt of the market.

The traction is made in the central part of the modules, so that it can be used as a bi-directional belt.

Its extraordinary adaptability, combined with its great resistance, allows reaching important conveyor lengths.

Belt pitch	30 mm
Belt width	Multiples of 10 mm
Rod diameter	4,6 mm
Drive system	Central
Ø min direct rotation roller	45 mm
Ø min reverse rotation roller	100 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
\$7	Trian Friction	PP-Polypropylene	PP-Polypropylene	*	*	+1 to +104	W - G	0%	15	Cap
	manrinetion	PE-Polyethylene	PE-Polyethylene	*	*	-50 to +65	N	070	13	Сар
47	Flat Friction	PP-Polypropylene	PP-Polypropylene	*	*	+1 to +104	W-G	0%	15	Cap
	Flat Fliction	PE-Polyethylene	PE-Polyethylene	*	*	-50 to +65	N	0%	15	Сар
_										
\$7	Arrow Friction	PP-Polypropylene	PP-Polypropylene	*	*	+1 to +104	W-G	0%	15	Cap
	Allow Friction	PE-Polyethylene	PE-Polyethylene	*	*	-50 to +65	*1	0 /0		Cap
_										
47		PP-Polypropylene	PP-Polypropylene		*	+1 to +104	W - G - B			
	Sliding Rollers	PE-Polyethylene	PE-Polyethylene	On Request	*	-50 to +65	N - B	*	*	Cap
		POM -Acetal	PP-Polypropylene	On Request	*	+1 to +90	В	, and the second		Сар
		r Olvi -Acetai	PE-Polyethylene		*	-40 to +65	В			
		PP-Polypropylene	PP-Polypropylene	1100	4,65	+1 to +104	G			
	Wave Embedded	ded PE-Polyethylene	PP-Polypropylene	1030	4,98	-50 to +65	*1	0%	10 mm	Cap
			POM-Acetal	1160	5,23	-40 to +65	*1			

¹W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

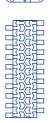
Special qualities

	Contact areas	Indent	Spaces between rubber rows	Belt material	Temperature limit (°C)	Rubber hardness grades and colour	Colours in stock	•	Sliding rollers material	Sliding rollers diameter	Spaces between sliding rollers
Trian Friction						Shore A35 - grey	W				
		Multiples of 10 mm	Wattipied of	PP-Polypropylene		Shore A45 - black*	G				
		Minimum of 30 mm	30 mm			Shore A60 - beige	W				
Flat Friction				PE-Polyethylene	-50 to +65	Shore A60 - beige	N				
		Multiples of 10 mm	Multiples of	PP-Polypropylene		Shore A35 - grey	W				
						Shore A45 - black*	G				
		Minimum of 30 mm	30 mm			Shore A60 - beige	W				
				PE-Polyethylene	-50 to +65	Shore A60 - beige	N				
Arrow Friction		Multiples of 10 mm	Multiples of	DD D I I	11+0 1104	Shore A35 - grey	W				
		Minimum of 30 mm	30 mm	PP-Polypropylene	+1 to +104	Shore A60 - beige	W				
Sliding Rollers								4,9 mm	Acetal	15 mm	Multiples of 30 mm

Series E30

Trian Friction

Designed with modules manufactured in rubber that are inserted between others, in order to achieve some good features of friction. They have some arranged triangular elevations transversally they get maximum grip and ease of cleaning. Special for elevators and and descenders for boxes or containers.



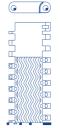
Flat Friction

Designed with modules manufactured in rubber that are inserted between others, in order to achieve some good features of friction. They have some flat elevations with corners rounded that get a maximum grip of products. Special for elevators and descenders boxes or containers.

Arrow Friction

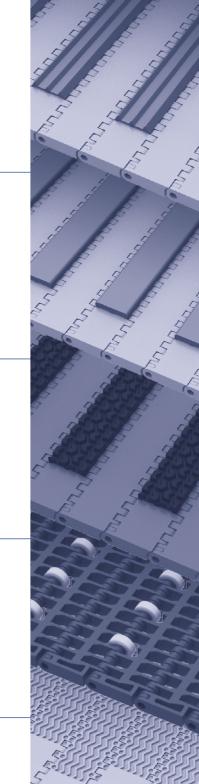
Designed with modules manufactured in rubber that are inserted between the others, in order to get some good friction characteristics. They have elevations in the form of inverted arrows that hold each other getting maximum grip on great inclines. Special for elevators and descenders boxes or containers.

Sliding Rollers



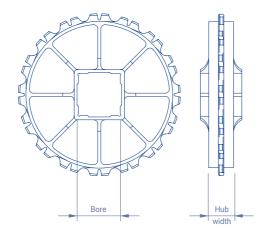
With rollers inserted in its surface that rotates in moments of accumulation of load, prevent crushing and wear on the base of the

This conveyor belt is primarily designed to solve the problems of transport of boxes and/or container



Wave Embedded

It has a surface specially designed for the transport of products highly malleable. Its closed FLAT TOP surface with embedded waves allows the product to be molded to them, giving as a result a greater grip without adhesion, in addition to a ease of cleaning.


^{*} consult technical department

SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

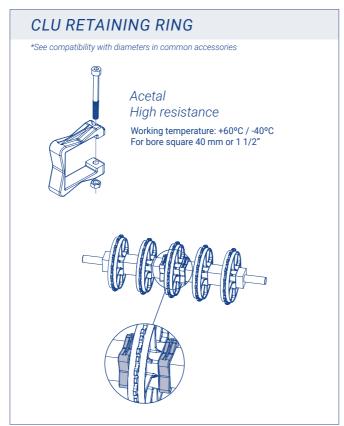
N° teeth Z	Ø Pitch	Bore for so	Hub width	
		mm	inch	
6	60	25	-	24
9	87,70	25 - 40	1 - 1,5	24
11	106,50	40	1,5	40
14	134,82	40	1,5	40
16	153,50	40 - 60	1,5 - 2,5	40
18	172,76	40 - 60	1,5 - 2,5	40
20	191,50	40 - 60 - 90	1,5	40

*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

WITH KEYWAY

WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

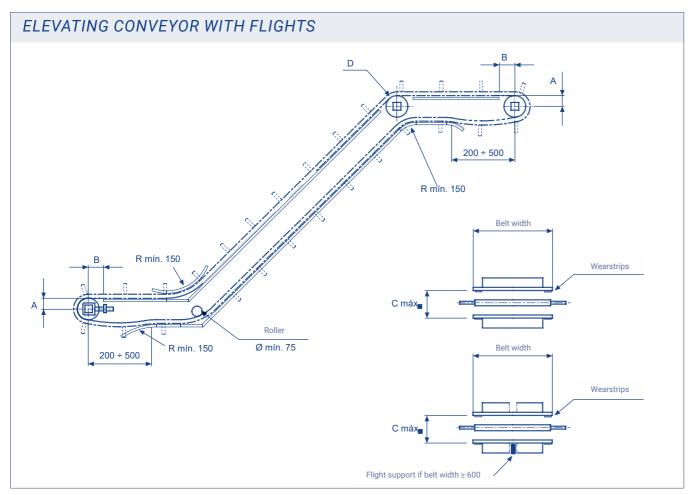
The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

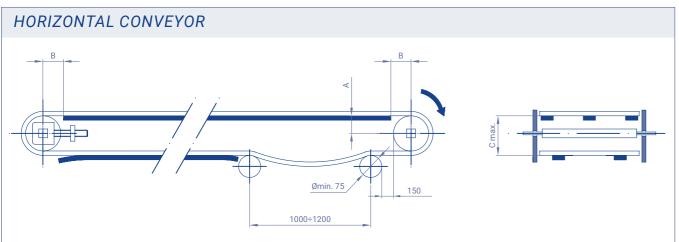
CLE RETAINING RING *See more in common accessories Screws Bore for | square shaft 25 M5x5 AISI 316 25 M5x5 Stainless 40 Мбхб steel 60 Мбхб 90 Мбхб

CONSTRUCTION DATA

SPROCKETS AND WEARSTRIPS

Belt nominal width (mm)		Minimum quantity of sprockets per shaft	Minimum quantity of wearstrips	
			Transport way	Return way
40	100	1	2	2
110	300	3	2	2
310	500	5	4	3
510	700	7	6	4
710	900	9	8	5
910	1100	11	10	6
1110	1300	13	12	7
1310	1500	15	14	8
1510	1700	17	16	9
1710	1900	19	18	11
1910	2100	21	20	12
2110	2300	23	22	13
2310	2500	25	24	14
2510	2700	27	26	15
2710	2900	29	28	16
2910	3100	31	30	17
3110	3300	33	32	18
3310	3500	35	34	19
3510	3700	37	36	21


To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:


Minimum quantity = —	Belt width (mm)
William quantity = —	100 mm

This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.

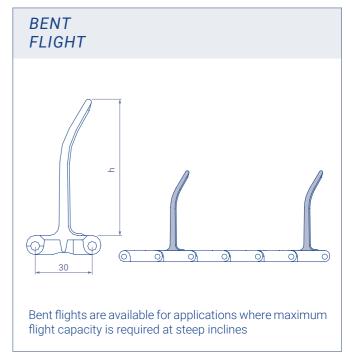
[D] If sprockets are used in the inflexion shaft, do not retain the central one.

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

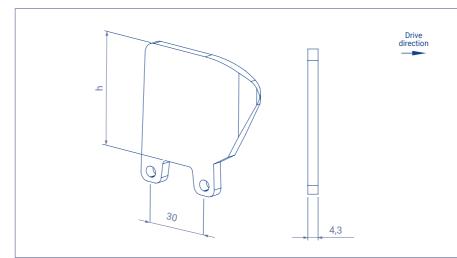
In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

0.20 0	io opi concio.			
N° of teeth Z	Ø Pitch	Α	B max.	C max.
6	60	25	30	65
9	87,70	37	40	92
11	106,50	48	50	110
14	134,82	62	53	135
16	153,50	73	65	155
18	172,76	81	70	175
20	191,50	91	75	195

FLIGHTS


Accessories	Height (h)	Materials
Straight flight streamline + no cling	25 50 75	Polypropylene Polyethylene Acetal
Straight flight no cling	25 50	Polypropylene Polyethylene
Bent flight	45 70	Polypropylene Polyethylene Acetal

The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the


Series E30

They have two faces, streamline and no cling, both can be used in one way or another one according to the need. Its non-stick side has ribs that project over the surface to prevent the product from sticking.

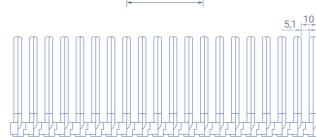
SIDE GUARDS

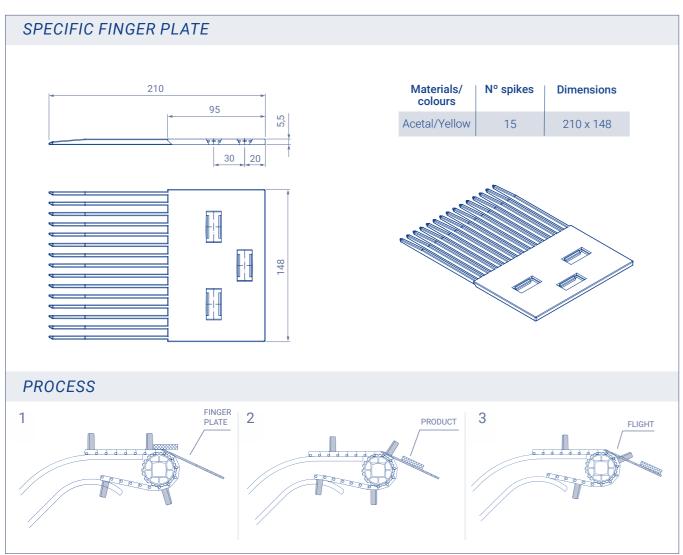
The side guards are plastic accessories that act as wingers while accompanying the movement, they are inserted

into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

Possibility of lowering the standard height for special applications

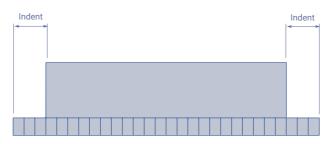
Height (h)	Materials
50	Polypropylene Polyethylene Acetal

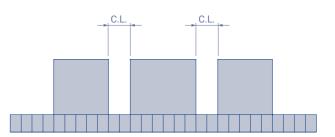

SPECIFIC RAISED RIB FLIGHT


Using this system the belt passes through the finger plate and the product comes unstuck from the bottom up without pressure or scrape.

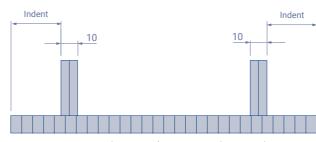
This unique combination of Raised Rib belt and grooved flight enables to elevate and transfer in-bulk or packed product without falls or cadence lost.

	-	16,5	>
20		40	
2			
15		30	

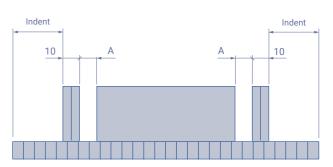

Accessories	Height (h)	Materials
Grooved flight	50	Acetal TPC


TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

BELT WITH ONLY FLIGHTS

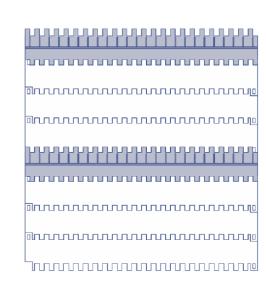

Indent = Multiple of 10 mm (minimum of 30 mm) Distance between flights = Multiple of 60 mm

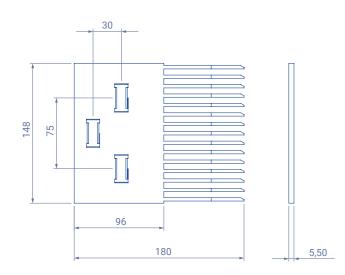
BELT WITH LONGITUDINAL CUTS


Flight longitudinal cut = Multiple of 10 mm (minimum of 30 mm)

BELT WITH ONLY SIDE GUARDS

Indent = Multiple of 10 mm (minimum of 20 mm) Multiple of 10 + 5 mm (minimum of 25 mm)


BELT WITH FLIGHTS AND SIDE GUARDS

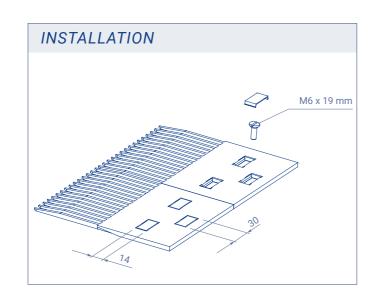

Indent = Multiple of 10 mm (minimum of 20 mm). A = 10 mm Multiple of 10 + 5 mm (minimum of 25 mm). A = 5 mm

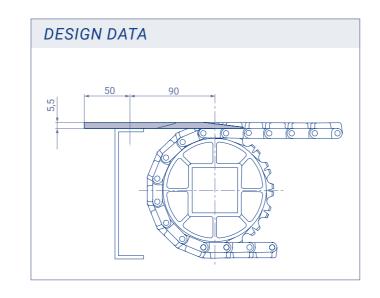
BELT WITH ZIG-ZAG FLIGHTS

BELT WITH FLIGHTS WITHOUT INDENT

FINGER PLATES

They have been designed to be used with the Raised Rib belt in applications of intersection of lines in which it is necessary to transfer the product by means of finger plates.


The finger plates are manufactured in nylon and acetal. They have 15 teeth that hide among the projecting ribs

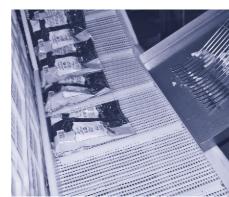

of the belt, allowing the constant flow of product as the belt is engaged. They avoid the use of conventional dead plates and consequently the problems by stumbling and fall of the product.

They have two fastening holes that enable little displacements to achieve a better coupling with the belt. Those holes are located so that they reduce to the minimum the vibrations owing to the turn of the belt over the sprockets.

The finger plates can be easily installed in the structure of the conveyor putting a screw in each hole.

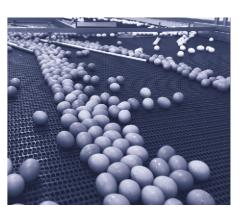
Materials/ colours	Nº of spikes	N° of fasteners
Nylon / black	15	3
Acetal / grey	13	3

Series E30 Flush Grid


Series E30 Sliding Rollers

Series E30 Flat Top Canning sector

Series E30 Flush Grid


Series E30 Open Grid

Series E30 Raised Rib

Series E30 Flush Grid Pastry sector

Series E30 Flush GridPoultry sector

Using the Series 31 Lateral-Transfer Flat Top, dynamic and smooth lateral transferences can be carried out, at 90°, with no need of finger plates.

One of its edges bevelled we manage to bring nearer the belts taking part in the transference, whereas the lower guides keep the belt aligned.

It has been designed for those applications in which we want to avoid the retention of containers in the transference area as well as to achieve more efficiency in their movement.

P	Belt pitch	30 mm
A	Belt width	152,4 mm
()io	Rod diameter	4,6 mm
	Drive system	Central
	Ø min direct rotation roller	45 mm
	Ø min reverse rotation roller	100 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg)	Lineal meter weight (kg)	Temperature limit (°C)	Standard Colours ¹		Belt thickness	Retention system
•	Lateral Transfer	POM -Acetal	Nylon	360	1,06	-40 to +90	В	00/	10 5055	Con
	Flat Top	POM -Acetal	PBT	380	1,07	-40 to +90	В	0%	10 mm	Cap

 ^{1}W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

Series E32

47

EUROBELT SERIES E32 has a 30 mm pitch and a mould-to-width geometry whose widths are 82.5, 114.3, 152.4, and 190.5 mm.

The EUROBELT E32 mould-to-width belts are much more noiseless and require smaller maintenance costs than the table-top belt lines. Moreover, not needing any type of lubricant for their normal working, their profitability is assured.

Ideal in parallel lines at different speeds for fast evacuation of product from the accumulation tables. In addition, and thanks to the special materials used, can be used on conveyors at high speeds and with accumulation.

P Belt pitch	30 mm
Rod diameter	4,6 mm
Drive system	Central
Ø min direct rotation roller	45 mm
Ø min reverse rotation roller	100 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg)	Lineal meter weight (kg)	Temp. limit (°C)	Standard Colours ¹	Belt width	Open Area + opening dimensions	Belt thickness	Retention system		
\$7				180	0,68			82,5					
		POM -Acetal	Nylon	250	0,95	-40 to +90	40 to ±00	В	114,3	0%	10	Con	
				340	1,26		В	152,4	076	10 mm	Cap		
	Flat Top			420	1,58			190,5					
	riat Top	POM -Acetal PBT	Acetal DDT	180	0,70	-40 to +90		82,5					
				250	0,97		-40 to +90	40 to ±00	40 to ±00 B	В	114,3	0%	10
			FDI	340	1,29				152,4	0%	10 mm	Сар	
				420	1,61			190,5					

 ^{1}W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

Special qualities

Lower sides SERIES E31 8 mm SERIES E32

Lateral Transfer Flat Top Series E31

With a configuration totally closed and flat, are placed on conveyors intermediate to perform dynamic transfers very soft at 90°. Possibility of use tohigh speeds.

Flat Top Series E32

compatibility with table-top of

From the market. Besides,

with a flat surface, totally flat

top, it is ideal for applications without the need for drains

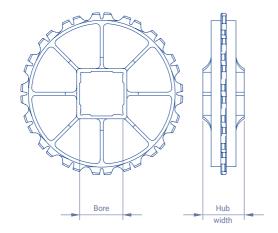
where is needed a great stability at high speeds.

It has lower guidesfor its

perfect alignment

Its availability in four measures which gives us a full

the market.



SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

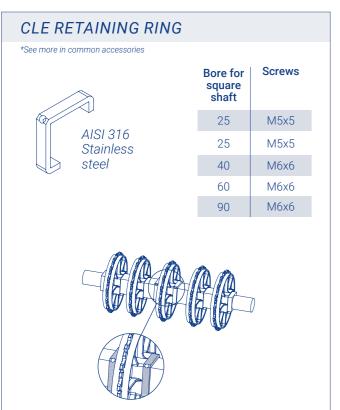
N° teeth Z	Ø Pitch	Bore for so	Bore for square shaft		
		mm	inch		
9	87,70	25 - 40	1 - 1,5	24	
11	106,50	40	1,5	40	
14	134,82	40	1,5	40	
16	153,50	40 - 60	1,5 - 2,5	40	
18	172,76	40 - 60	1,5 - 2,5	40	
20	191,50	40 - 60 - 90	1,5	40	

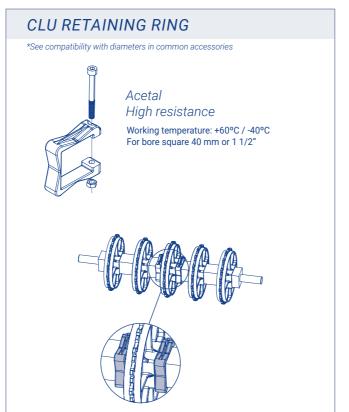
*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

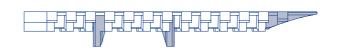
Technical sheets //

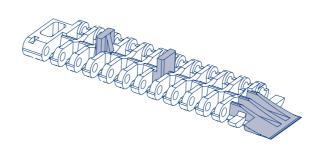
WITH KEYWAY


WITHOUT KEYWAY

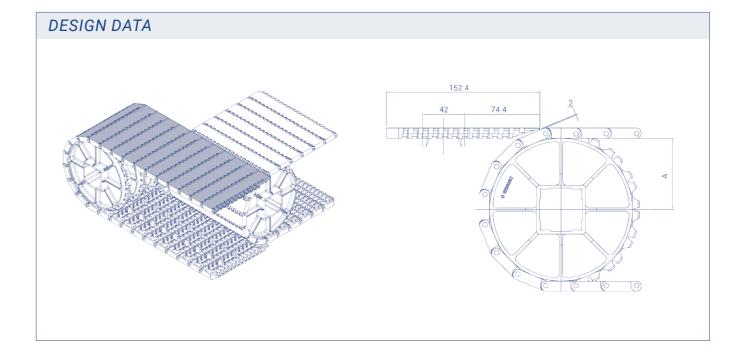

RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.


Additionally, the effects of temperature cause the belt to expand


The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

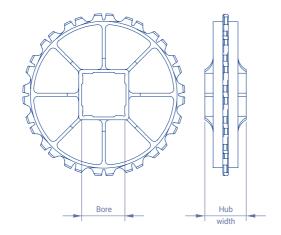
TRANSFERENCE BY BELT



By using Series 31 Lateral Transfer Flat Top, is possible to carry out transfers or transfers smooth dynamic sides.

Thanks to one of its edges bevelled an approach is achieved to the previous conveyor. Prepared with some lower guides for its perfect alignment, with this belt we are able to get as close as possible to the conveyor, as it gets sucked in and go profiling the circumference that generates the same when turning in the sprocket delivery.

Designed for those applications in which it is intended to avoid with holding of containers in the transfer area and achieve higher performance in movement of the same.



SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

Nº teeth Z	Ø Pitch	Bore for square shaft mm inch		Hub width
9	87,70	25 - 40	1 - 1,5	24
11	106,50	40	1,5	40
14	134,82	40	1,5	40
16	153,50	40 - 60	1,5 - 2,5	40
18	172,76	40 - 60	1,5 - 2,5	40
20	191,50	40 - 60 - 90	1,5	40

 $\hbox{*Consult the technical department for the availability of split sprocket or mechanized sprocket}$ with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

WITH KEYWAY

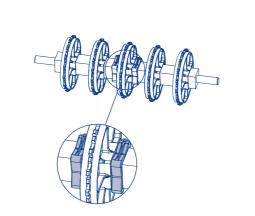
WITHOUT KEYWAY

RETAINING RINGS

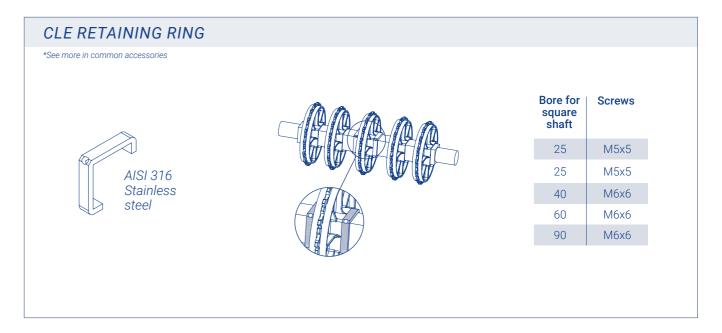
Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

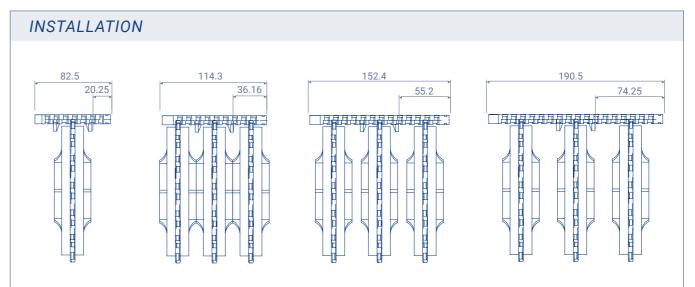
Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.


CLU RETAINING RING

*See compatibility with diameters in common accessories




Acetal High resistance

Working temperature: +60°C / -40°C For bore square 40 mm or 1 1/2"

Series E32

Is the most resistant of all our belts, thanks to its specific design and high strength.

Its 40 mm pitch minimizes the polyhedron effect typical of big-pitch belts and makes easier the transference of product.

Its strong structure, together with the central traction system, enables working with very heavy loads in very extreme conditions.

P	Belt pitch	40 mm
A	Belt width	Multiples of 10 mm
(A)	Rod diameter	6 mm
	Drive system	Central
	Ø min direct rotation roller	55 mm
9	Ø min reverse rotation roller	150 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
		PP-Polypropylene	PP-Polypropylene	3600	11,01	+1 to +104	W - G - B			
	Elek Ten	PE-Polyethylene	PE-Polyethylene	2730	11,34	-50 to +65	N-B	0%	16	Cap
	Flat Top	POM -Acetal	PP-Polypropylene	4910	16,42	+1 to +90	В	0%	16 mm	Cap
		POW -Acetai	PE-Polyethylene	4350	16,72	-40 to +65	В			
		PP-Polypropylene	PP-Polypropylene	3600	11,06	+1 to +104	W - G - B	1.40/		
	Flush Grid	PE-Polyethylene	PE-Polyethylene	2700	11,25	-50 to +65	N	14%	16 mm	Cap
	riusii Giiu	POM -Acetal	PP-Polypropylene	4800	16,05	+1 to +90	В	Maximum [8 x 4.5]mm		Оар
		1 OW Acetai	PE-Polyethylene	4200	16,35	-40 to +65	В	[O X 1.0]IIIII		
	Non Slip	PPE - Polypropylene Electrically Conductive*	PP-Polypropylene	3600	11,97	+1 to +104	0	0%	16	Con
		BCE - Acetal Electrically Conductive*	PP-Polypropylene	On Request availability	On Request availability	On Request availability	On Request availability	076	16 mm	Cap
	*Unsuitable for direct o	contact with food.								
	Flat Friction	PP-Polypropylene	PP-Polypropylene	3600	11,06	+1 to +104	W-G	004	16	
	riat Friction	PE-Polyethylene	PE-Polyethylene	2700	11,25	-50 to +65	N	0%	16 mm	Cap
	Trian Friction	PP-Polypropylene	PP-Polypropylene	3600	11,06	+1 to +104	W - G	0%	16 mm	Con
	man Friction	PE-Polyethylene	PE-Polyethylene	2700	11,25	-50 to +65	N	0%	10111111	Cap
•		PP-Polypropylene	PP-Polypropylene		*	+1 to +104	W - G - B			
	Sliding Rollers	PE-Polyethylene	PE-Polyethylene	On Donwood	*	-50 to +65	N			0
	Flush Grid	POM -Acotal	PP-Polypropylene	On Request	*	+1 to +90	В	*	*	Cap
		POM -Acetal	PE-Polyethylene		*	-40 to +65	В			

 $^{1}W = White G = Grey N = Natural B = Blue O = Black$ ¹Consult the complete colour chart: Page 176

47

47

47

Special qua	Contact areas	Indent	Spaces between rubber rows	Belt material	Temperature limit (C°)	Rubber hardness grades and colour		rollers		Sliding rollers diameter	Spaces between sliding rollers
Flat Friction						Shore A35 - grey	W				
		Multiples of 10 mm Minimum of 30 mm		PP-Polypropylene		Shore A45 - black*	G				
						Shore A60 - beige	W				
				PE-Polyethylene	-50 to +65	Shore A60 - beige	N				
Trian Friction		Multiples of 10 mm	Multiples of 40	PP-Polypropylene	+1 to +104	Shore A35 - grey	W				
						Shore A45 - black*	G				
		Minimum of 30 mm	mm			Shore A60 - beige	W				
				PE-Polyethylene	-50 to +65	Shore A60 - beige	N				
Sliding rollers								10 mm	Acetal	25 mm	Multiples of 40 mm

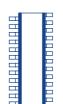
*Unsuitable for direct contact with

(0 (0)

Flat Top

Given the closed surface configuration, is the suitable conveyor belt for those applications in which it is not necessary any drainage through the belt and/or the product to be transported is small. Due to its great mechanical resistance, it is ideal for applications having large conveyance lengths or bearing very heavy loads.

Flush Grid


It has a grille-shaped configuration with a 14% open area, and a completely smooth surface. Due to the specific study carried out, it is one of the strongest belts in the market, having an excellent drainage capacity

Non Slip

Has a closed surface with a relief specially designed to avoid slips. Both its high resistance to traction and to chemical aggression of oils and industrial acids make it be the suitable belt for assembly lines in the automotive, for conveying people, furniture, electrical appliances, etc.

Flat Friction

Designed with modules manufactured in rubber that are inserted between others, in order to achieve some good features of friction. They have some flat elevations with corners rounded that get a maximum grip of products. Special for elevators and descenders boxes or

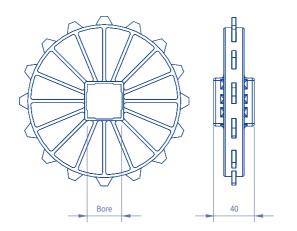
Trian Friction

Designed with modules manufactured in rubber that are inserted between others, in order to achieve some good features of friction. They have some arranged triangular elevations transversally they get maximum grip and ease

Sliding Rollers

With rollers inserted in its surface that rotates in moments of accumulation of load, prevent crushing and wear on the base of the product. This conveyor belt is primarily designed to solve the problems of transport of boxes and/or

Series **E40**

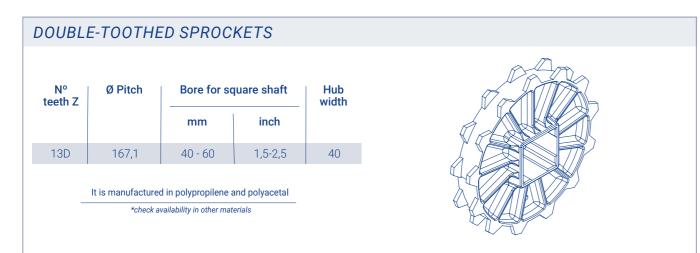

^{*} consult technical department

SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety, and split sprockets to reduce maintenance time on replacements.

N° teeth Z	Ø Pitch	Bore for square shaft		Hub width
		mm	inch	
8	104,5	40	1,5	40
10	129,4	40 - 60	1,5	40
13	167,1	40 - 60	1,5	40
16	205	40 - 60	1,5	40
20	255,7	40 - 60 - 90	1,5	40

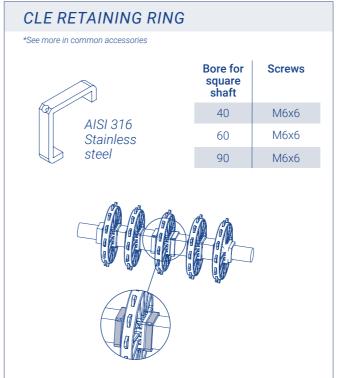
*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

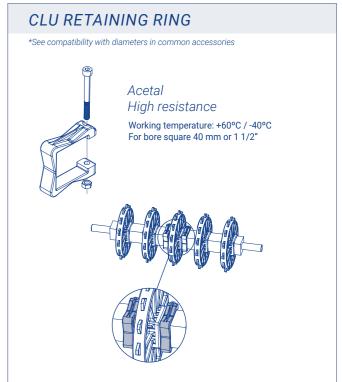

It is manufactured in polypropilene, polyacetal and stainless steel

*check availability in other materials

WITH KEYWAY WITHOUT KEYWAY

RETAINING RINGS


Eurobelt retaining rings are used to secure the central gear on the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.


Additionally, the effects of temperature cause the belt to expand

or contract

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

Series **E40**

CONSTRUCTION DATA

SPROCKETS AND WEARSTRIPS

Minimum quantity of

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

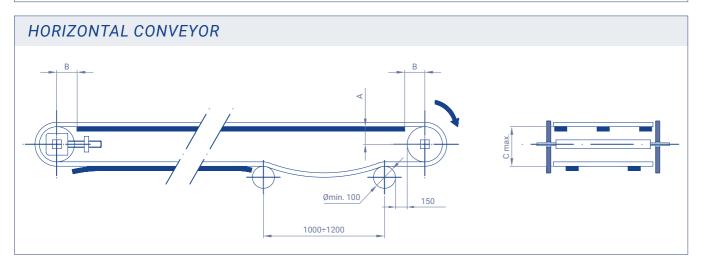
Minimum quantity = -	Belt width (mm)
William quantity = =	150 mm

This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.

Belt nominal width (mm)			quantity of sprockets	wearstrips			
ı	Belt nominal	width (mm)	per shaft	Transport way	Return way		
	60	150	1	2	2		
	160	450	3	2	2		
	460	750	5	3	2		
	760	1050	7	5	3		
	1060	1350	9	6	4		
	1360	1650	11	7	5		
	1660	1950	13	9	6		
	1960	2250	15	10	7		
	2260	2550	17	11	8		
	2560	2850	19	12	9		
	2860	3150	21	14	10		
	3160	3450	23	15	11		
	3460	3750	25	16	12		
	3760	4050	27	18	13		


Minimum

Technical sheets //

Series **E40**

B R min. 150 R min. 150

[A] Distance between the sliding surface of the belt and the centre of the shaft.

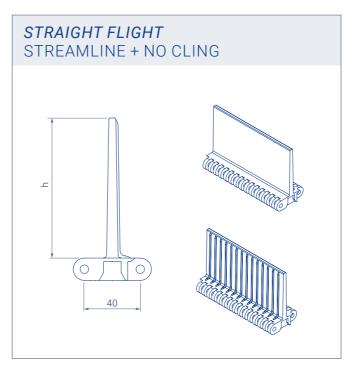
[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.

[D] If sprockets are used in the inflexion shaft, do not retain the central one.

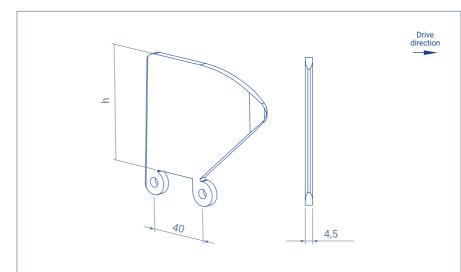
[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.


N° of teeth Z	Ø Pitch	A	B max.	C max.
8	104,5	43	45	105
10	129,4	56	55	130
13	167,1	75	70	165
13D	167,1	75	70	165
16	205,0	94	80	205
20	255,7	120	90	255

FLIGHTS

Accessories	Height (h)	Materials
Straight flight Streamline + no cling	25 - 50 75 - 100	Polypropylene Polyethylene Acetal
Bent flight	45 - 70 90	Polypropylene Polyethylene Acetal

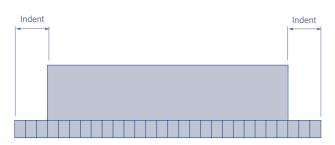

The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.

They have two faces, streamline and no cling, both can be used in one way or another one according to the need. Its non-stick side has ribs that project over the surface to prevent the product from sticking.

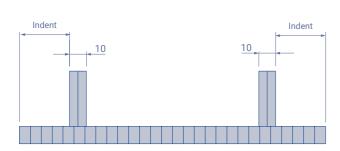
SIDE GUARDS

The side guards are plastic accessories that act as wingers while accompanying the movement, they are inserted

into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

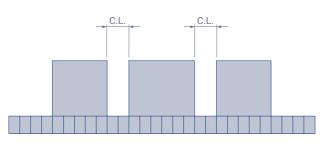

Possibility of lowering the standard height for special applications

Height (h)	Materials
50	Polypropylene
75	Polyethylene
100	Acetal

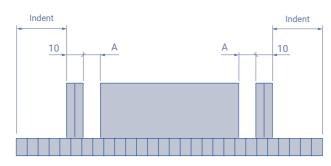

TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

BELT WITH ONLY FLIGHTS

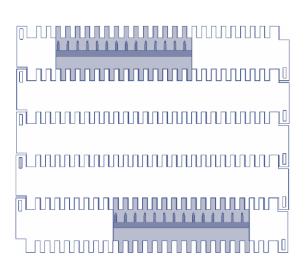
Indent = Multiple of 10 mm (minimum of 30 mm) Distance between flights = Multiple of 80 mm


BELT WITH ONLY SIDE GUARDS

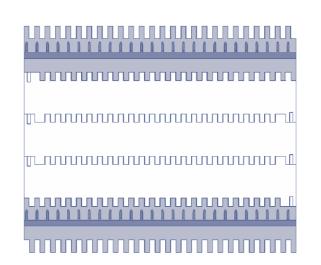
Indent = Multiple of 10 mm (minimum of 30 mm)


Multiple of 10 + 5 mm (minimum of 35 mm)

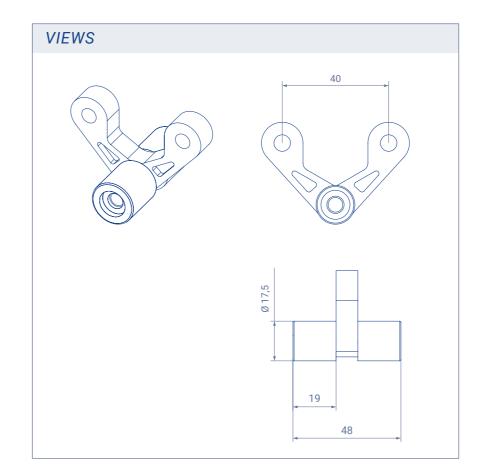
BELT WITH LONGITUDINAL CUTS


Flight longitudinal cut = Multiple of 10 mm (minimum of 30 mm)

BELT WITH FLIGHTS AND SIDE GUARDS

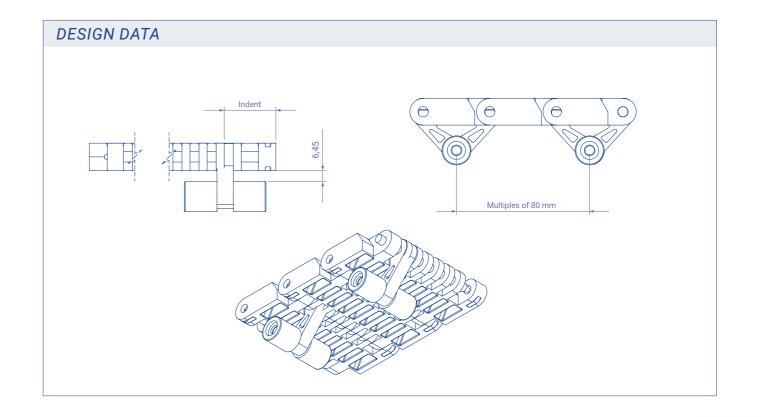


Indent = Multiple of 10 mm (minimum of 30 mm). A = 10 mm Multiple of 10 + 5 mm (minimum of 35 mm). A = 5 mm


BELT WITH ZIG-ZAG FLIGHTS

BELT WITH FLIGHTS WITHOUT INDENT

HOLD-DOWN ROLLERS


They are used to fasten the belt to the conveyor in all the inflexions.

In applications in which the belt must be submerged, they are placed in the middle of the belt to prevent it from getting bent due to the flotation.

They will roll along rails fastened throughout the conveyor structure. It is recommended to place wearstrips to avoid the wear owing to rolling as far as possible.

The distance between the side edge of the belt and the centre of the hold-down roller (indent) must be a multiple of 5 mm. Hold-down rollers cannot be used with the following sprockets:

N° of teeth	Bore for square shaft
8	40
10	60

It has the same basis structure than SERIES E40, but some projecting ribs have been added on its whole surface in which the fingerplates teeth get linked at the infeed and the outfeed of the conveyor.

This conveyor belt, combined with the finger plates, provides a transfer system that avoids the overturning of the recipients.

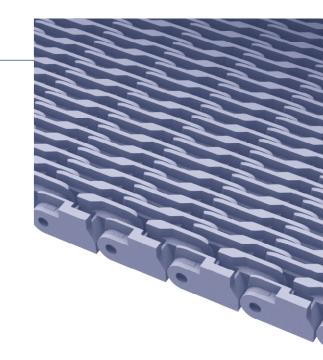
P	Belt pitch	40 mm
A	Belt width	Multiples of 10 mm
Nie Nie	Rod diameter	6 mm
	Drive system	Central
	Ø min direct rotation roller	55 mm
0	Ø min reverse rotation roller	150 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system	
	Raised Rib	PP-Polypropylene	PP-Polypropylene	3600	11,98	+1 to +104	Grey	25% Maximum [10x7.5] mm	22 mm Cap	Con	
Raiseu Rib	Kaiseu Kib	PP-Green	PP-Polypropylene	3690	11,98	+1 to +104	Green			Сар	

Special qualities

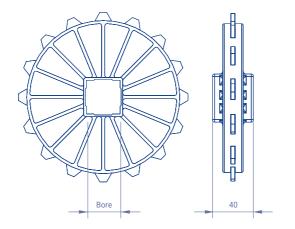
47

	Contact areas	Indent	Spaces between rubber rows	Rubber hardness	Spaces between Trian rods	Sliding rollers width	Sliding rollers material	Sliding rollers diameter	Spaces between sliding rollers
Raised Rib	31%								


Series **E41**

Raised Rib

By its configuration of projecting ribs, enables us to make product transfers by using finger plates. The central reinforcement of the ribs increases durability of them and reducing also, the distance between them, thus allowing the entrance of cans, glass jars or containers in general, avoiding their overturning, reducing overturning of line, as well as anu damage in the belt surface and sprockets, and continuous stops of the lines process.



SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety and split sprockets to reduce maintenance time on replacements.

N° teeth Z	Ø Pitch	Bore for so	quare shaft	Hub width
		mm	inch	
8	104,5	40	1,5	40
10	129,4	40 - 60	1,5	40
13	167,1	40 - 60	1,5	40
16	205	40 - 60	1,5	40
20	255,7	40 - 60 - 90	1,5	40

*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

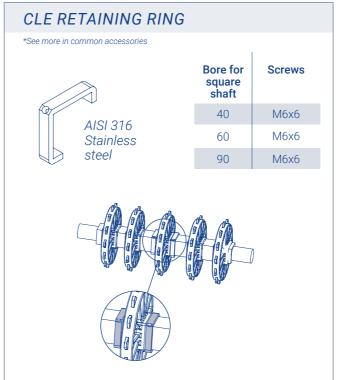
It is manufactured in polypropilene, polyacetal and stainless steel

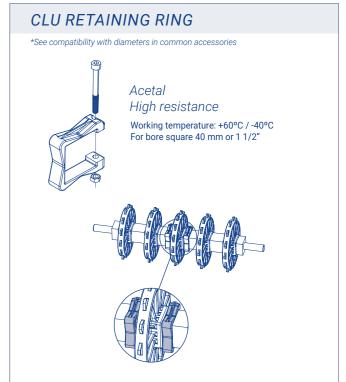
*check availability in other materials

WITH KEYWAY WITHOUT KEYWAY

N° teeth Z Ø Pitch Bore for square shaft mm inch 13D 167,1 40-60 1,5-2,5 40 It is manufactured in polypropilene and polyacetal *check availability in other materials*

RETAINING RINGS


Eurobelt retaining rings are used to secure the central gear on the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.


Additionally, the effects of temperature cause the belt to expand

or contract

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

Series **E41**

SPROCKETS AND WEARSTRIPS

18

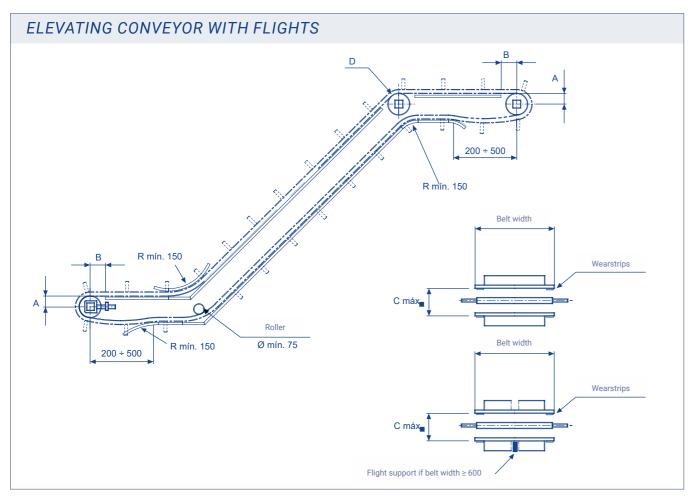
Minimum quantity of

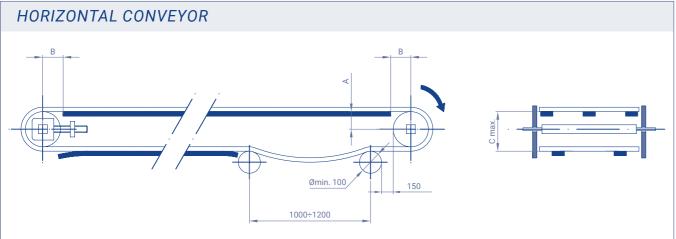
B. Branco Sc. J.		Minimum quantity of sprockets		strips	
Belt nominal	width (mm)	per shaft	Transport way	Return way	
60	150	1	2	2	
160	450	3	2	2	
460	750	5	3	2	
760	1050	7	5	3	
1060	1350	9	6	4	
1360	1650	11	7	5	
1660	1950	13	9	6	
1960	2250	15	10	7	
2260	2550	17	11	8	
2560	2850	19	12	9	
2860	3150	21	14	10	
3160	3450	23	15	11	
3460	3750	25	16	12	

4050

3760

Minimum


To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:


Minimum quantity = —	Belt width (mm)
Willimum quantity – —	150 mm

This amount must always be odd.

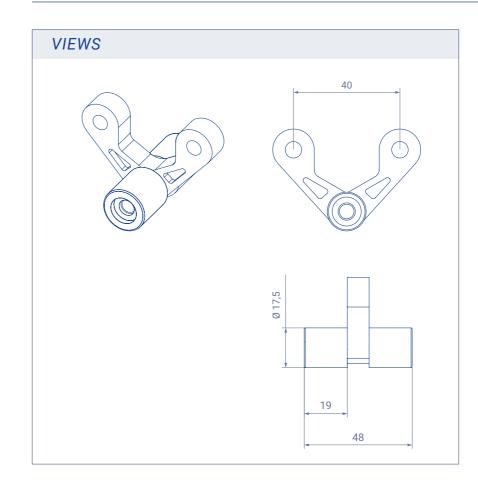
To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.

[A] Distance between the sliding surface of the belt and the centre of the shaft.

B Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.

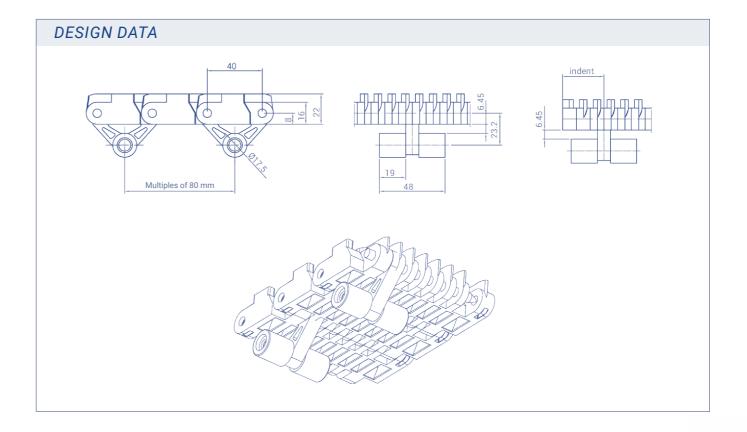

[D] If sprockets are used in the inflexion shaft, do not retain the

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

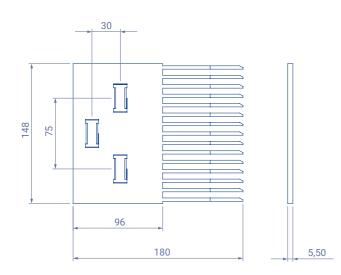
In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	A	B max.	C max.
8	104,5	43	45	105
10	129,4	56	55	130
13	167,1	75	70	165
13D	167,1	75	70	165
16	205,0	94	80	205
20	255,7	120	90	255

HOLD-DOWN ROLLERS


They are used to fasten the belt to the conveyor in all the inflexions.

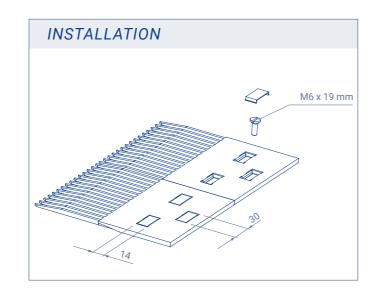
In applications in which the belt must be submerged, they are placed in the middle of the belt to prevent it from getting bent due to the flotation.

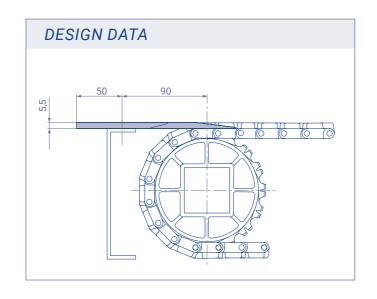

They will roll along rails fastened throughout the conveyor structure. It is recommended to place wearstrips to avoid the wear owing to rolling as far as possible.

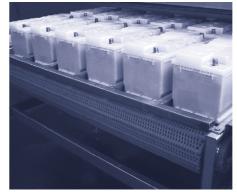
The distance between the side edge of the belt and the centre of the hold-down roller (indent) must be a multiple of 5 mm. Hold-down rollers cannot be used with the following sprockets:

N° of teeth	Bore for square shaft
8	40
10	60

FINGER PLATES


They have been designed to be used with the Raised Rib belt in applications of intersection of lines in which it is necessary to transfer the product by means of finger plates.


The finger plates are manufactured in nylon and acetal. They have 15 teeth that hide among the projecting ribs of the belt, allowing the constant flow of product as the belt is engaged. They avoid the use of conventional dead plates and consequently the problems by stumbling and fall of the product.

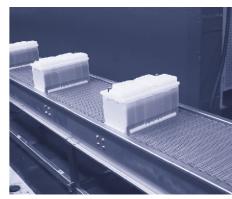

They have two fastening holes that enable little displacements to achieve a better coupling with the belt. Those holes are located so that they reduce to the minimum the vibrations owing to the turn of the belt over the sprockets.

The finger plates can be easily installed in the structure of the conveyor putting a screw in each hole.

Material / Colours	N° of spikes	Nº of fasteners
Nylon / black	15	3
Acetal / grey	13	٥

Series E40 Flush Grid Automotive sector

Series E41 Raised Rib Beverage sector


Series E40 Non Slip

Series E40 Flush Grid Packing sector

Series E40 Flush Grid Canning sector

Series E40 Flush Grid Automotive sector

Series E30 E40 Flush Grid Packing sector

Series E41 Raised Rib Canning sector

With a 50 mm pitch is the most versatile of all our series due to its wide range of models and accessories.

It can be used in many applications: straight conveyors, elevating and descending conveyors, press machines, palletisers and depalletisers, boiling, glazing, freezing, etc.

It is the most practical solution for most of the conveying applications which do not need very specific requirements. The industries requiring more this series are those of fish, canning, and fruits and vegetables, among others.

Belt pitch	50 mm
Belt width	Multiples of 20 mm
Rod diameter	6 mm
Drive system	Hinge
Ø min direct rotation roller	75 mm
Ø min reverse rotation roller	150 mm

	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
	Flat Top	PP-Polypropylene	PP-Polypropylene	1800	7,70	+1 to +104	W - G - B	0%	15,2 mm	Cap
	riat top	PE-Polyethylene	PE-Polyethylene	1100	8,04	-50 to +65	N - B	070	13,211111	Сар
	Perforated Flat	PP-Polypropylene	PP-Polypropylene	1800	7,35	+1 to +104	W-B	18% [15x2] - [9x2]	15,2 mm	Cap
	Тор	PE-Polyethylene	PE-Polyethylene	1100	7,67	-50 to +65	В	[6x1,8] mm	10,211111	Оар
	Flush Grid	PP-Polypropylene	PP-Polypropylene	2400	7,30	+1 to +104	W - G - B	40% Maximum	16 mm	Cap
	i iusii onu	PE-Polyethylene	PE-Polyethylene	1500	7,60	-50 to +65	N - B	[7 x 12,6] mm	10111111	Сар
\$7	Open Grid	PP-Polypropylene	PP-Polypropylene	1800	6,60	+1 to +104	В	40% Maximum	16 2222	Welded
	Open Gna	PE-Polyethylene	PE-Polyethylene	1100	6,89	-50 to +65	В	[6,7x10,3] mm	16 mm	rod ²
\$7	Open Grid High	PP-Polypropylene	PP-Polypropylene	1800	7,30	+1 to +104	В	40%	16 2222	Welded
	Open Grid High	PE-Polyethylene	PE-Polyethylene	1100	7,50	-50 to +65	В	Maximum [6,7x10,3] mm	16 mm	rod ²
	Knurled	PP-Polypropylene	PP-Polypropylene	1800	7,30	+1 to +104	W	0%	150	Con
	Kiluileu	POM -Acetal	PP-Polypropylene	2500	10,50	-50 to +65	*1	0%	15,2 mm	Cap

 $^{1}W = White G = Grey N = Natural B = Blue O = Black$

²Flush Grid terminal cap possibility

¹Consult the complete colour chart: Page 176

Special qualities

	Contact areas	Indent	Spaces between rubber rows	Rubber hardness	Height edges central	Spaces between Trian rods	Sliding rollers width	rollers	Diámetro rulina	Spaces between sliding rollers
Open grid	40%				4 mm					
Open Grid High	40%				9 mm					

Series **E50**

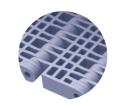
Due to its closed surface,

// Technical sheets

completely flat and smooth, avoids any damage and overturn in the product, as well as the resulting line blockage. It is the conveyor belt most commonly used in elevating conveyors for products in bulk, and in delicate product conveyance.

Flat Top

Perforated Flat Top


It has an 18% open area, a completely smooth surface, and grille-shaped small straight holes without structural obstacles, to make easy the drainage of any liquid.

Flush Grid

It has a grille-shaped configuration, with a 40% open area, and a completely smooth surface.

It is ideal for applications in which there are a lot of debris of the conveyed product, as their removal is very easy by means of air or water under pressure.

Open Grid

It has a grille-shaped configuration, and a 40% open area, is suitable for applications in which drainage through the belt is required.

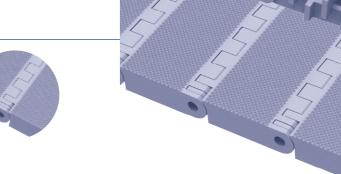
We have accomplished an exclusive design of this conveyor belt consisting of two transverse projections in the middle of every pitch to achieve the product do not adhere to the belt.

Open Grid High

Besides the advantages of the Open Grid surface, provides the possibility of using the 5 mm high transversal reliefs as miniflights for raising product, which makes it particularly suitable for the prawns

Knurled

It has a flat-corrugated surface that has been designed to prevent the conveyed product from adhering to the belt. Due to its corrugated surface, it is used in slightly inclined conveyors as well, without the product slipping.



With a 50 mm pitch is the most versatile of all our series due to its wide range of models and accessories.

It can be used in many applications: straight conveyors, elevating and descending conveyors, press machines, palletisers and depalletisers, boiling, glazing, freezing, etc.

It is the most practical solution for most of the conveying applications which do not need very specific requirements. The industries requiring more this series are those of fish, canning, and fruits and vegetables, among others.

P Bel		50 mm
Bel wid		Multiples of 20 mm
Roo dia	d meter	6 mm
Driv sys	ve tem	Hinge
	nin direct ation roller	75 mm
	nin reverse ation roller	150 mm

DD Dalamana Ing. DD Dalamana 1900 770 11 to 1104 W	Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
PP-Polypropylene PP-Polypropylene 1800 7,70 +1 to +104 W		PP-Polypropylene	PP-Polypropylene	1800	7,70	+1 to +104	W			
Conic PE-Polyethylene PE-Polyethylene 1100 8,04 -50 to +65 *¹ 0% 15,2 mm Call	Conic	PE-Polyethylene	PE-Polyethylene	1100	8,04	-50 to +65	*1	0%	15,2 mm	Cap
POM -Acetal PP-Polypropylene 2500 10,80 +1 to +90 *1		POM -Acetal	PP-Polypropylene	2500	10,80	+1 to +90	*1			

Trian friction PE-Polyethylene PE-Polyethylene PE-Polyethylene PE-Nolyethylene PE-Polyethylene PE-Polyethylene PE-Polyethylene	\$7		PP-Polypropylene	PP-Polypropylene	On Danword	*	+1 to +104	W - G - B			
1.2.1 Stydentyland		Trian friction	PE-Polyethylene	PE-Polyethylene	Un Request	*	-40 to +65	N - B	*	*	Cap

17		PP-Polypropylene	PP-Polypropylene		*	+1 to +103	W - G - B		d.	
	Conic friction	PE-Polyethylene		Un Request	*	-40 to +65	N - B	* *	*	Cap

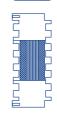
***	Olt It - D II	PP-Polypropylene	PP-Polypropylene	0 D	*	+1 to +104	W - G - B	*	*	0
	Sliding Rollers	PE-Polyethylene	PE-Polyethylene	On Request	*	-50 to +65	N - B	,	^	Cap

¹W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176 * consult technical department

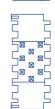
Special qualities

	Contact areas	Indent	Spaces between rubber rows	Rubber hardness	Spaces between Trian rods	Sliding rollers width	Material of small roller	Sliding rollers diameter	Spaces between sliding rollers
Trian Friction		Multiples of 20 mm	Multiples of 50 mm Minimum of 100 mm	Shore A60					
Conic Friction		Multiples of 20 mm	Multiples of 50 mm Minimum of 100 mm	Shore A60					
Sliding Rollers						10 mm	Acetal	25 mm	Multiples of 50 mm

Series **E50**

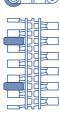


// Technical sheets


Conic It has a smooth surface with small

pyramidalshaped elevations that provide a greater coefficient of friction, as well as they avoid the slippery products to change their position during the conveyance.

Trian Friction

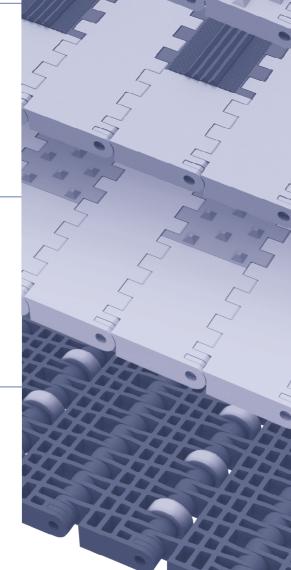

Designed with modules manufactured in rubber that are inserted between others, in order to achieve some good features of friction. They have some arranged triangular elevations transversally they get maximum grip and ease of cleaning. Special for elevators and and descenders for boxes or containers.

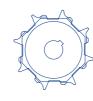
Conic Friction

Designed with modules manufactured in rubber that are inserted between others, in order to achieve some good features of friction. It has pyramidalshaped elevations transversely arranged for maximum grip.

Sliding Rollers With rollers inserted in

its surface that rotates in moments of accumulation of load, prevent crushing and wear on the base of the product. This conveyor belt is primarily designed to solve the problems of transport of boxes and/or container




SPROCKETS

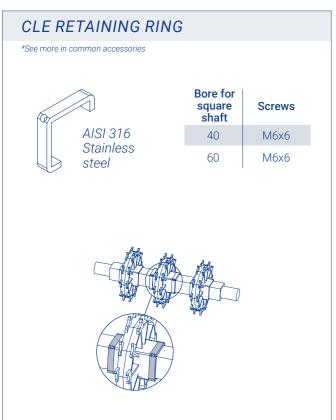
We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

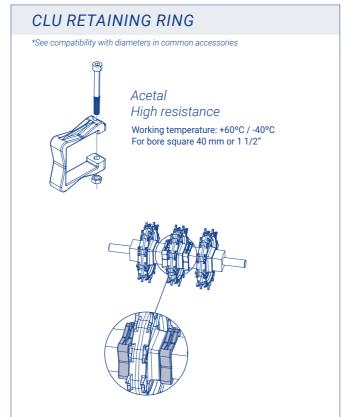
Nº teeth Z	Ø Pitch	Bore for square shaft		Hub width
		mm	inch	
6	100	40	1,5	40
8	130,6	40	1,5	40
10	161,8	40-60	1,5-2,5	40
16	256,2	40-60	1,5-2,5	60

^{*}Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

CONSTRUCTION DATA

SPROCKETS AND WEARSTRIPS

Series **E50**

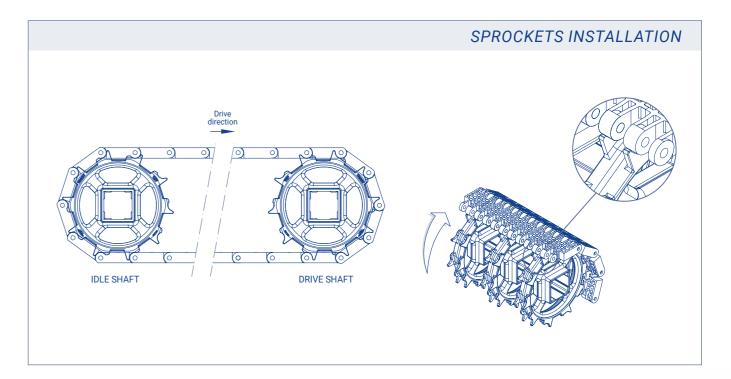
Minimum quantity of

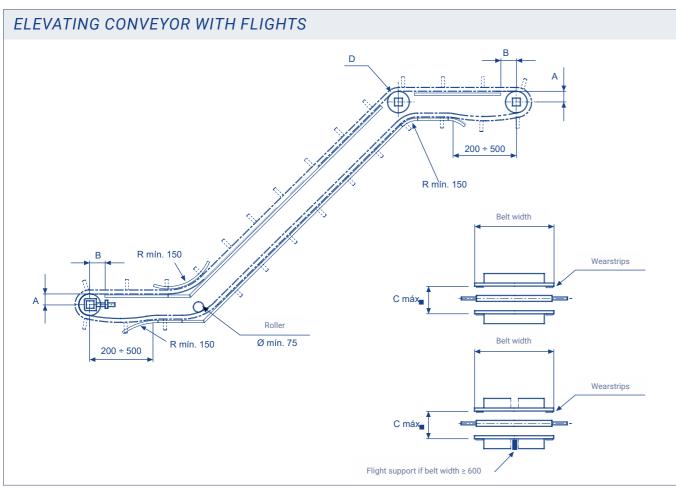
wearstrips

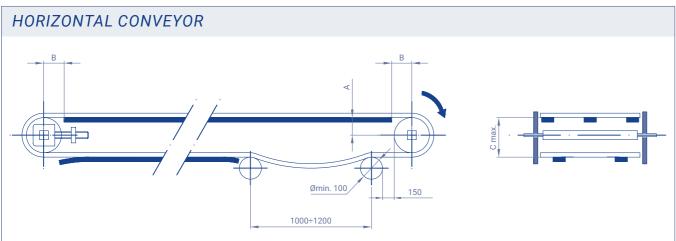
To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Minimum quantity = –	Belt width (mm)
Willimum quantity = =	150 mm

This amount must always be odd.


To calculate the quantity of supports, the weight of the product to be transported must be taken into account.


The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.


Belt nominal width (mm)		quantity or				
		sprockets per shaft	Transport way	Return way		
40	140	1	2	2		
160	420	3	2	2		
440	700	5	3	2		
720	980	7	5	3		
1000	1260	9	6	4		
1280	1540	11	7	5		
1560	1820	13	9	6		
1840	2100	15	10	7		
2120	2380	17	11	8		
2400	2660	19	12	9		
2680	2940	21	14	10		
2960	3220	23	15	11		
3240	3500	25	16	12		
3520	3780	27	18	13		

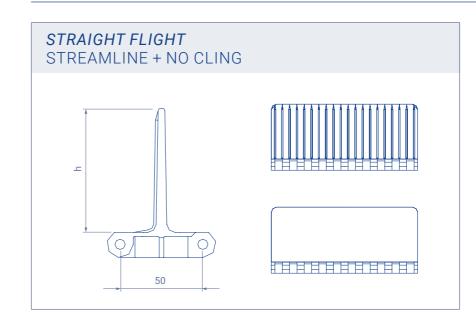
Minimum

quantity of

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

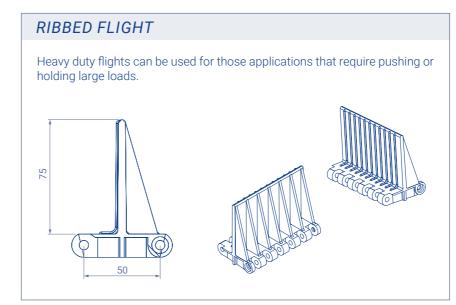
[C] Distance between the sliding surface of the belt and the support of the return way.

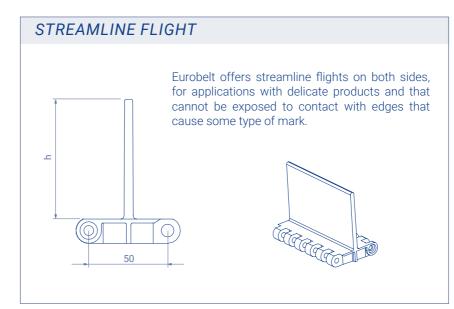

[D] If sprockets are used in the inflexion shaft, do not retain the central one.

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	А	B max.	C max.
6	100	42	55	105
8	130,65	58	60	135
10	161,80	72	76	165
16	256,29	120	80	260

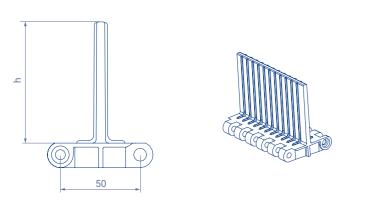

FLIGHTS



When building a conveyor, Eurobelt can design your belt with flights and/ or side guards, taking into account the size and the weight of the product to be transported, as well as the height and inclination of the conveyor.

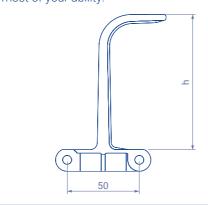
The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.

They have two faces, streamline and no cling, both can be used in one way or another one according to the need. Its non-stick side has ribs that project over the surface to prevent the product from sticking.

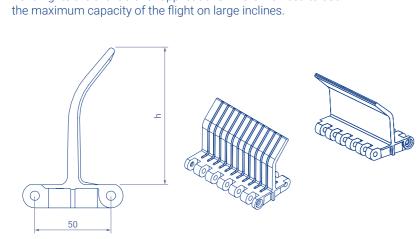


Accessories	Height (h)	Materials
Straight flight (streamline + no cling)	25-50-75 100-125 150	Polypropylene Polyethylene
Ribbed Flight	75	Polypropylene Polyethylene
Streamline flight	25 50 75	Polypropylene Polyethylene
No cling flight	25-50-75 100-125 150	Polypropylene Polyethylene
Scoop flight	95-120	Polypropylene
Bent flight (streamline)	75	Polypropylene Polyethylene
Bent flight (no cling)	45-70-90 115-140	Polypropylene Polyethylene
Bent flight (streamline + no cling)	45-70-90 115-140	Polypropylene Polyethylene

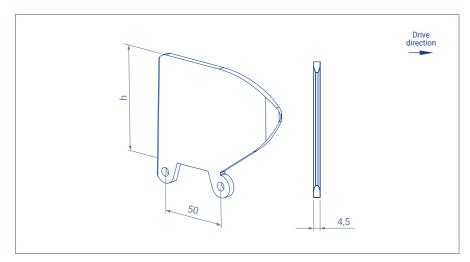
NO CLING FLIGHTS


Series **E50**

No cling flights are available on both sides, mainly for those applications with very sticky products, normally transported in bulk and that cover the entire space between rows of consecutive flights.


SCOOP FLIGHT

Eurobelt provides scoop flight type, which retains the product, mainly in bulk, in large inclines by making the most of your ability.



BENT FLIGHT

Bent flights are available for applications where we need to use

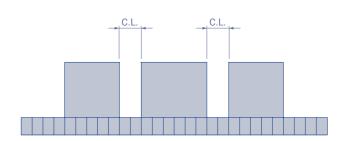
SIDE GUARDS

The side guards are plastic accessories that act as wingers while accompanying the movement, they are inserted

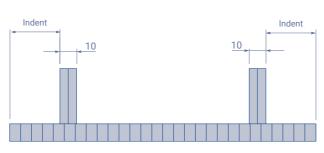

into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

Possibility of lowering the standard height for special applications

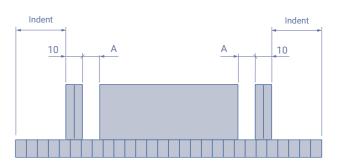
Height (h)	Materials
50 75 100	Polypropylene Polyethylene


TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

BELT WITH ONLY FLIGHTS


Indent = Multiple of 20 mm (minimum of 40 mm)
Distance between flights = Multiple of 100 mm

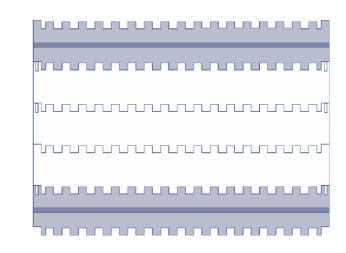
BELT WITH LONGITUDINAL CUTS


Flight longitudinal cut = Multiple of 20 mm (minimum of 40 mm)

BELT WITH ONLY SIDE GUARDS

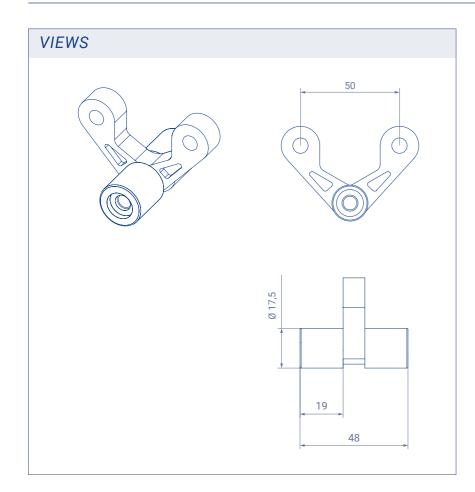
Indent = Multiple of 20 + 5 mm

BELT WITH FLIGHTS AND SIDE GUARDS



Indent = Multiple of 20 + 5 mm

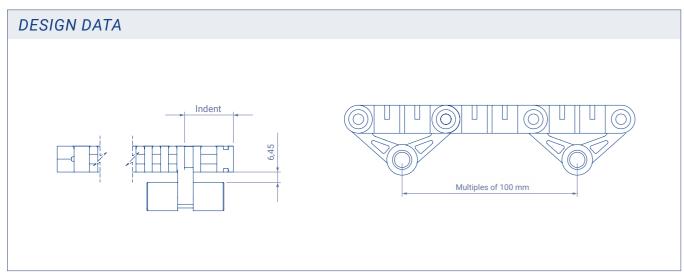
BELT WITH ZIG-ZAG FLIGHTS



BELT WITH FLIGHTS WITHOUT INDENT

HOLD-DOWN ROLLERS

They are used to fasten the belt to the conveyor in all the inflexions.

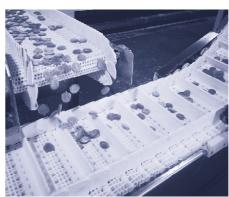

In applications in which the belt must be submerged, they are placed in the middle of the belt to prevent it from getting bent due to the flotation.

They will roll along rails fastened throughout the conveyor structure. It is recommended to place wearstrips to avoid the wear owing to rolling as far as possible.

The distance between the side edge of the belt and the centre of the hold-down roller (indent) must be a multiple of 10

Hold-down rollers cannot be used with the following sprockets:

N° of teeth	Bore for square shaft
6	40



Series E50 Flush Grid

Series E50 Trian Friction

Series E50 Flush Grid

Series E50 Flush Grid + E30 Flat Top Pastry sector

Series E50 Flat Top

Series E50 Sliding Rollers

Series E50 Perforated

Series E50 Flush Grid

Cap

16 mm

[11,6 x 10,4] mm

Series **B50**

Plastic modular belt which is the most hygienic and resistant modular belt for food industry. Designed with completely rounded corners, open edges, and bigger openings in the hinge area, it is very easy to clean, even when it is working. Its underside transversal drive bar and the compact design of the sprockets, make it have a very positive traction, maintaining extreme cleanliness

Manufactured with materials very resistant to scratches and penetration, it provides a high reliability in processes with cutting tools or in cases of important impacts. It is specially indicated for the meat and poultry industry or for rocesses in which the cleanliness is essential.

Belt pitch	50 mm
Belt width	Multiples of 20 mm
Rod diameter	5,5 mm
Drive system	Central
Ø min direct rotation roller	75 mm
Ø min reverse rotation roller	150 mm

Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
	PP-Polypropylene	PP-Polypropylene	1550	9,06	+1 to +104	W - B		16 mm	Сар
Flat Top	PE-Polyethylene	PE-Polyethylene	750	9,50	-50 to +65	N - B	0%		
гіат тор	POM -Acetal	PP-Polypropylene	1650	13,43	+1 to +90	W - B	0%		
	T OW Acetal	PE-Polyethylene	990	13,47	-40 to +65	W - B			
	PP-Polypropylene	PP-Polypropylene	1115	7,34	+1 to +104	W - B	20% [13 x 2] - [11 x 2] - [7 x 2] mm] 16 mm	
Perforated	PE-Polyethylene	PE-Polyethylene	650	7,75	-50 to +65	*1			
Flat Top	POM -Acetal	PP-Polypropylene	1590	11,17	+1 to +90	*1			Cap
	FOW Acetal	PE-Polyethylene	990	11,18	-40 to +65	*1			
	PP-Polypropylene	PP-Polypropylene	1450	7,15	+1 to +104	W - B			
	PF-Polvethylene	PE-Polyethylene	370	7,65	-50 to +65	N	28%		

-40 to +65

+1 to +90

-40 to +65

W

 $^{1}W = White G = Grey N = Natural B = Blue O = Black$ ¹Consult the complete colour chart: Page 176

POM -Acetal

POM -Acetal

PP-Polypropylene

PE-Polyethylene

670

1600

800

7,88

10,95

10,97

Flush Grid

Series **B50**

Flat Top

With a surface totally closed and flat in its transport zone is ideal for applications where no drainage needed over the

Its lower design totally rounded increases the ease to evacuate liquids and thus reduce costs

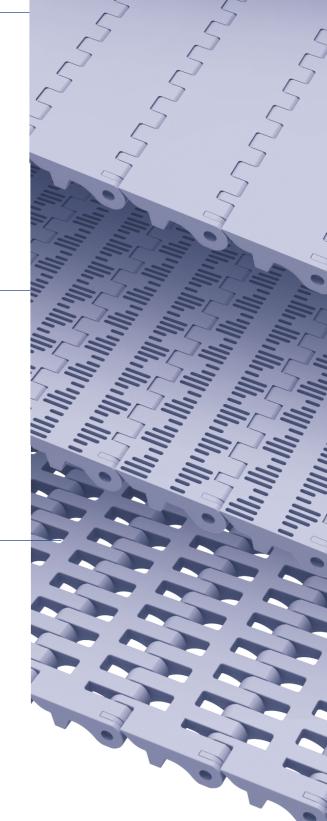
of waters, detergents and also the washing times. Ideal for use in all the processes that require a big cleaning.



Perforated Flat Top

Its smooth perforated surface allows the air to flow and the liquids to drain

away.
It is the ideal belt for production food processes (boiling, draining, drying) as well as for preservation processes (sterilization, refrigeration).



It has a large area of 28% open which makes it ideal for those processes in which we need an extreme cleanliness along with a good drain through it. Ideal in the industry of fish and fruit and vegetables.

Series **B50**

SPROCKETS

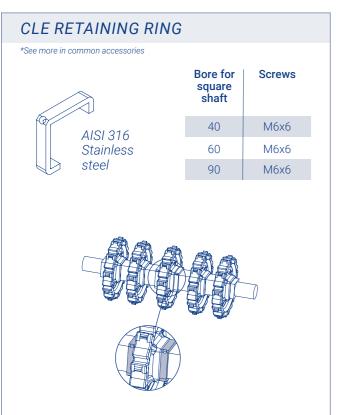
We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

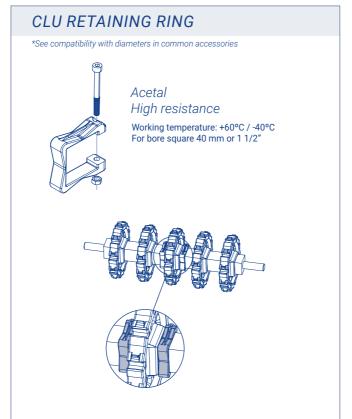
N° teeth Ø Z Pitch		Bore for so	Hub width	
		mm	inch	
6	100	40	1,5	40
8	130,65	40	1,5	40
10	161,8	40 - 60	1,5 - 2,5	40
12	193,18	40 - 60	1,5 - 2,5	40
16	256,29	40 - 60 - 90	1,5 - 2,5 - 3,5	40

*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

Series **B50**

Minimum quantity of

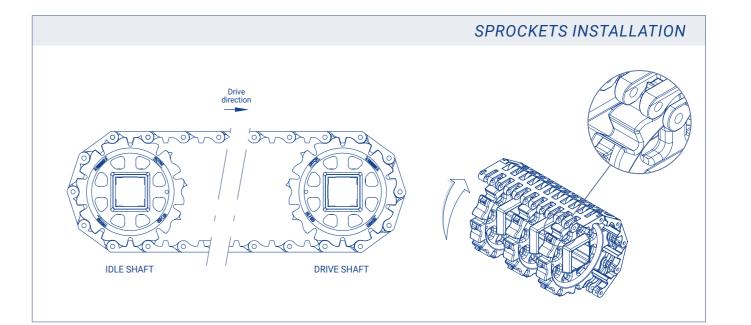
wearstrips

CONSTRUCTION DATA

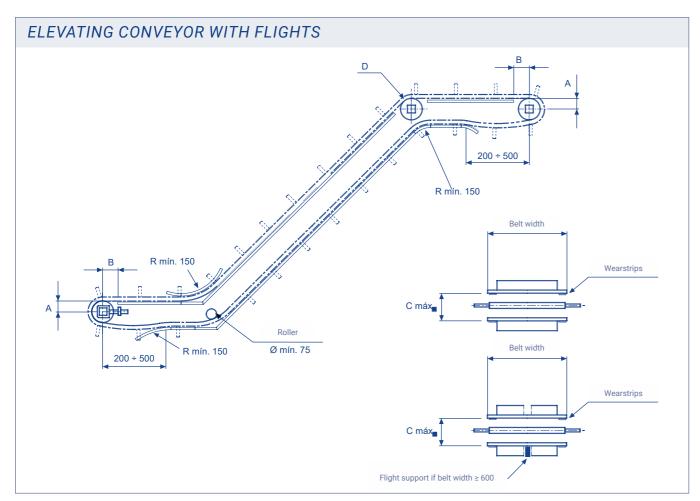
SPROCKETS AND WEARSTRIPS

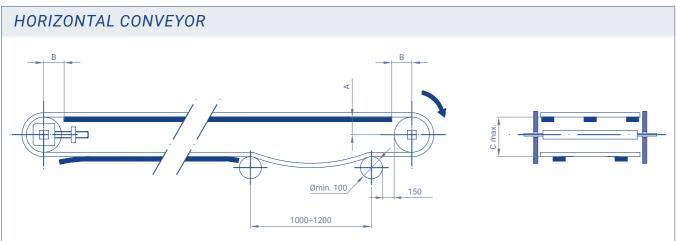
To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Minimum quantity -	Belt width (mm)
Minimum quantity = -	140 mm


This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.


The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.


			quantity of	wearstrips		
	Belt nominal	width (mm)	sprockets per shaft	Transport way	Return way	
	40	140	1	2	2	
	160	420	3	2	2	
	440	700	5	3	2	
	720	980	7	5	3	
	1000	1260	9	6	4	
	1280	1540	11	7	5	
	1560	1820	13	9	6	
	1840	2100	15	10	7	
	2120	2380	17	11	8	
	2400	2660	19	12	9	
	2680	2940	21	14	10	
	2960	3220	23	15	11	
	3240	3500	25	16	12	
	3520	3780	27	18	13	

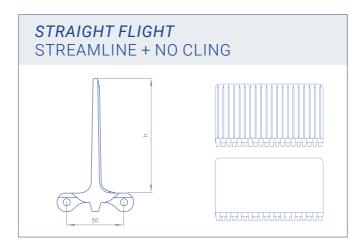
Minimum

Technical sheets //

[A] Distance between the sliding surface of the belt and the centre of the shaft.

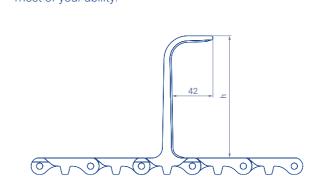
[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.


[D] If sprockets are used in the inflexion shaft, do not retain the central one.

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

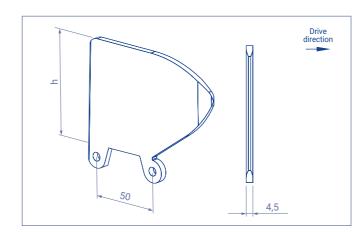
In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.


N° of teeth Z	Ø Pitch	A	B max.	C max.
6	100	42	55	105
8	130,65	58	60	135
10	161,80	72	76	165
12	193,18	89	78	200
10	256,29	120	80	260

FLIGHTS


SCOOP FLIGHT

Eurobelt provides scoop flight type, which retains the product, mainly in bulk, in large inclines by making the most of your ability.


The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the

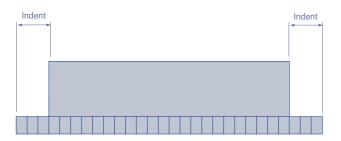
They have two faces, streamline and no cling, both can be used in one way or another one according to the need. Its non-stick side has ribs that project over the surface to prevent the product from sticking.

Accessories	Height (h)	Materials
Straight flight (streamline + no cling)	25-50 75-100 150	Polypropylene Polyethylene Acetal
Bent flight (streamline + no cling)	45-70 90-140	Polypropylene Polyethylene Acetal
Scoop flight	100	Polypropylene

SIDE GUARDS

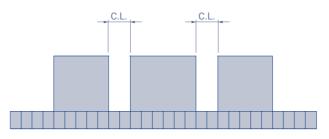
The side guards are plastic accessories that act as wingers while accompanying the movement, they are inserted

into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

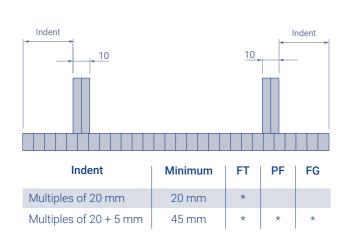

Possibility of lowering the standard height for special aplicaciones

Height (h)	Materials
50	Polypropylene
75	Polyethylene
100	Acetal

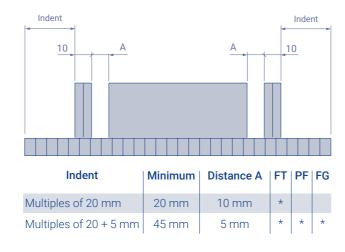
Series **B50**


TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

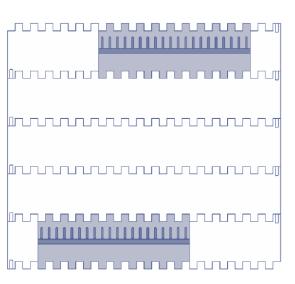
BELT WITH ONLY FLIGHTS

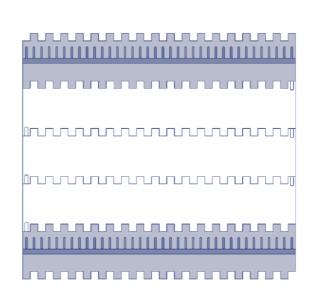

Indent = Multiple of 20 mm (minimum of 40 mm) Distance between flights = Multiple of 100 mm

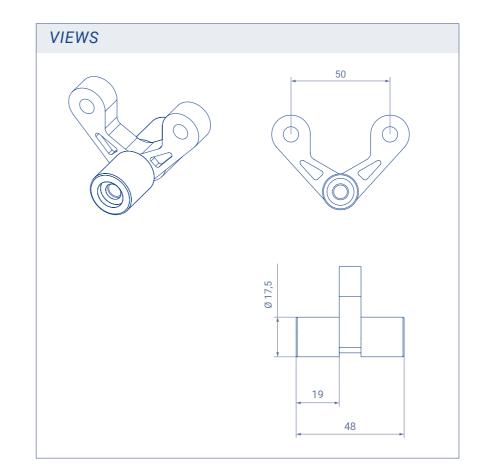
BELT WITH LONGITUDINAL CUTS



Flight longitudinal cut = Multiple of 20 mm (minimum of 40


BELT WITH ONLY SIDE GUARDS


BELT WITH FLIGHTS AND SIDE GUARDS

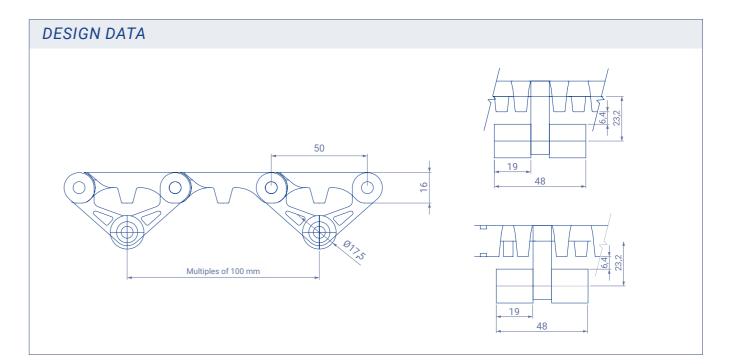

BELT WITH ZIG-ZAG FLIGHTS

BELT WITH FLIGHTS WITHOUT INDENT

HOLD-DOWN ROLLERS

They are used to fasten the belt to the conveyor in all the inflexions.

Series **B50**


In applications in which the belt must be submerged, they are placed in the middle of the belt to prevent it from getting bent due to the flotation.

They will roll along rails fastened throughout the conveyor structure. It is recommended to place wearstrips to avoid the wear owing to rolling as far as possible.

The distance between the side edge of the belt and the centre of the hold-down roller (indent) must be a multiple of 10

Hold-down rollers cannot be used with the following sprockets:

N° of teeth	Bore for square shaft
6	40

Series **D50**

The D50 Series is an innovative line of modular belts designed to optimise transfers and improve product flow in demanding industrial environments. This series is distinguished by its unique design that maximises strength, durability and dimensional stability.

The Roller 90° version facilitates soft lateral transfers thanks to the orientation of its rollers, while the Roller 0° allows for efficient linear movement with the possibility of accumulation and reduced friction. In addition, the Flush Grid model without rollers, with 20% open area, offers excellent mechanical strength for applications requiring ventilation and drainage.

All variants incorporate an 8 mm diameter connecting rod, which reduces wear and therefore maintenance, minimises stretching and significantly extends belt life.

P	Belt pitch	50 mm
A	Belt width	Multiples of 50 mm
Ni [©]	Rod diameter	8 mm
	Drive system	Central
	Ø min direct rotation roller	75 mm
	Ø min reverse rotation roller	150 mm

Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
Flush Grid	PP-Polypropylene	Nylon	4750	9,85	+9 to +104	В	20%	16 mm	Cap
Roller 0°	PP-Polypropylene	Nylon	3600	13,78	+9 to +104	В	17%	16 mm	Cap
Roller 90°	PP-Polypropylene	Nylon	3650	13,78	+9 to +104	В	17%	16 mm	Cap

¹W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

Special qualities

	Roller	Roller	Roller contact	Roller	Roller
	diameter	length	length with product	height	material
Roller 0° Roller 90°	19 mm	19 mm	15 mm	4,7 mm	Acetal Polypropylene

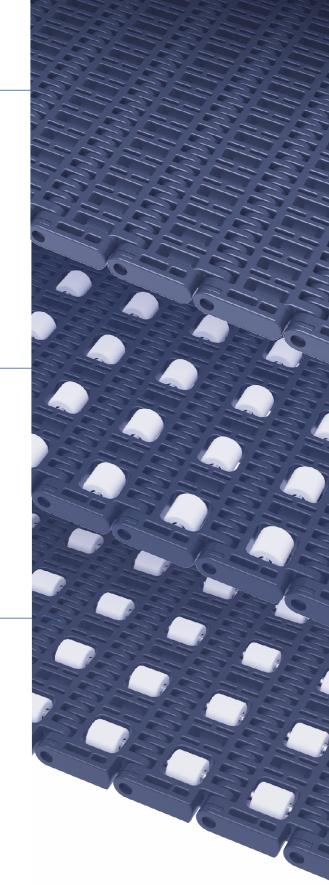
Series **D50**

Flush Grid

A grid configuration, with a 20% open surface and a completely flat surface. This conveyor belt is ideal for high-load applications where drainage through the belt is necessary, avoiding accumulation of particles on the belt surface.

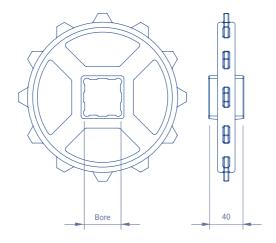
Roller 0°

With rollers running at 0° This conveyor belt is mainly designed to solve heavy duty box and/ or packaging conveying



Roller 90°

With rollers placed at 90°, this belt makes lateral transfers completely smooth, maintaining the integrity of each part and minimising wear and tear in demanding applications.


Series **D50**

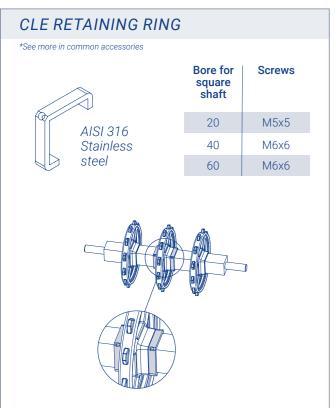
SPROCKETS

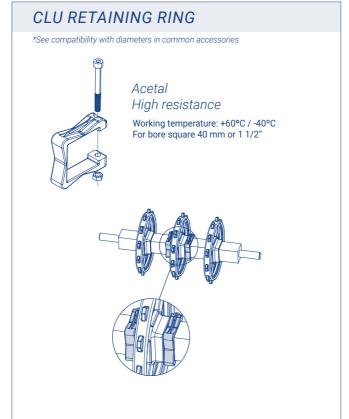
We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

١	Nº teeth Z	Ø Pitch	Bore for so	quare shaft	Hub width
			mm	inch	
	10	161,80	40 - 60	1,5 - 2,5	40
	12	193,18	40 - 60	1,5 - 2,5	40
	16	256,29	40 - 60	1,5 - 2,5	40

*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials


WITH KEYWAY WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

Series **D50**

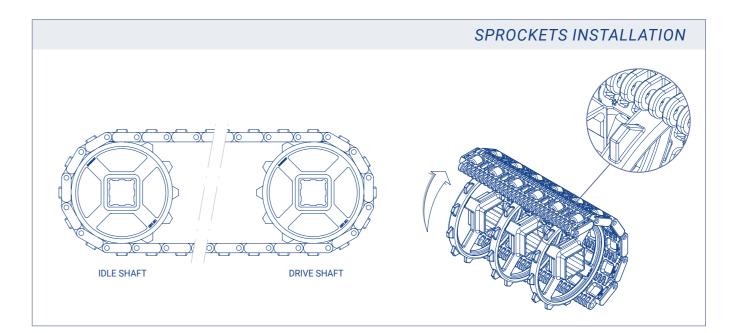
Minimum quantity of

CONSTRUCTION DATA

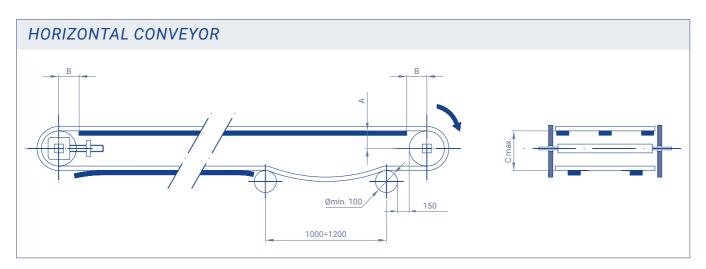
SPROCKETS AND WEARSTRIPS

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Minimum quantity -	Belt width (mm)
Minimum quantity = -	150 mm


This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.


The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.

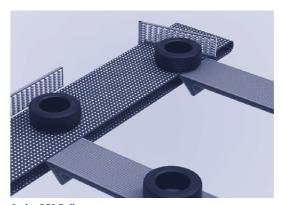
Belt nominal width (mm)		quantity of	wearstrips			
		sprockets per shaft	Transport way	Return way		
	150	150	1	2	2	
	200	250	2	2	2	
	300	450	3	2	2	
	500	750	5	3	3	
	800	1050	7	5	3	
	1100	1350	9	6	4	
	1400	1650	11	7	5	
	1700	1950	13	9	6	
	2000	2250	15	10	7	
	2300	2550	17	11	8	
	2600	2850	19	12	9	
	2900	3150	21	14	10	
	3200	3450	23	15	11	
	3500	3750	25	16	12	
	3800	4050	27	18	13	

Minimum

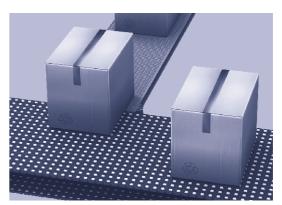
Series **D50**

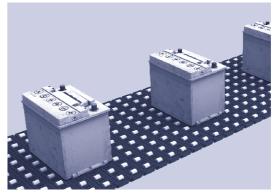
[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.


[C] Distance between the sliding surface of the belt and the support of the return way.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.


N° of teeth Z	Ø Pitch	Α	B max.	C max.
10	161,80	72	76	165
12	193,18	89	78	200
16	256,29	120	80	260


Series D50 Roller Stainless steel shaft filled with plastic

Series D50 Roller

Series D50 Roller Packing sector

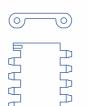
Series D50 Roller Automotive sector

Series **D50**

It has a pitch of 50 mm, being a bidirectional belt, it is designed with completely smooth surfaces on both sides: on the top of conveyor and lower driving, not existing no nooks and crannies that make it the cleanest on the market, especially for applications that require extreme cleaning without excessive load, mainly meat industry or poultry.

Designed with smooth surfaces on both sides, it prevents adherence and retention of the product in handling. Its open hinge structure, which opens at each turn of the belt, contributes to an unbeatable cleanliness.

This belt is designed to ensure easy cleaning in applications with products that release particles or liquid residues, avoiding subsequent contaminations.


50 mm
Multiples of 16 mm
6 mm
Hinge
75 mm
150 mm

Belt surface	Belt material	Rod material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
	PP-Polypropylene	PP-Polypropylene	1045	6,91	+1 to +104	W-B			
Flat Ton	PE-Polyethylene	PE-Polyethylene	475	7,17	-50 to +65	N - B	00/	16	Con
Flat Top	POM -Acetal	PP-Polypropylene	1700	10,23	+1 to +90	N	0%	16 mm	Cap
		PE-Polyethylene	1500	10,23	-40 to +65	N			

	PP-Polypropylene	PP-Polypropylene	1045	5,50	+1 to +104	W-B	0.40		
Perforated	PE-Polyethylene	PE-Polyethylene	475	5,83	-50 to +65	В	24% [13 x 2] -	16 mm	
Flat Top	POM -Acetal	PP-Polypropylene	1700	8,31	+1 to +90	*1	[10 x 2] mm		Cap
		PE-Polyethylene	1500	8,31	-40 to +65	*1			

 $^{^{1}}W = White G = Grey N = Natural B = Blue O = Black$

Series **E80**

// Technical sheets

Flat Top

With a surface totally closed and flat in its transport zone is ideal for applications where it is not needed drainage on the belt. Ideal for industry food in general and poultry or meat in especially for its ease

Perforated

It has a 24% open area and a

completely smooth surface with grille-shaped small straight not presenting any structural obstacle, which have the following dimensions: [13 x 2] and [10 x 2] mm. It is perfect for products very light in which we need extremely clean. They can be combined with metallic reinforcements for increase its strength (check

¹Consult the complete colour chart: Page 176
* consult technical department

SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

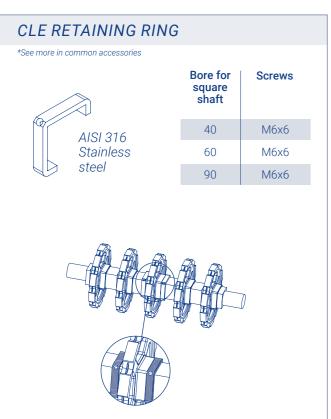
N° teeth Z	Ø Pitch	Bore for square shaft		Hub width
		mm	inch	
8	130,6	40	1,5	40
10	161,8	40 - 60	1,5	40
12	193,2	40 - 60	1,5	40
16	256,3	40 - 60 - 90	1,5	40

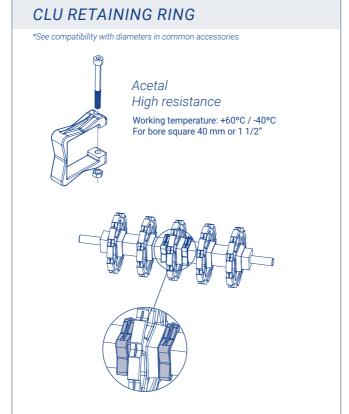
*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel

*check availability in other materials

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

CONSTRUCTION DATA

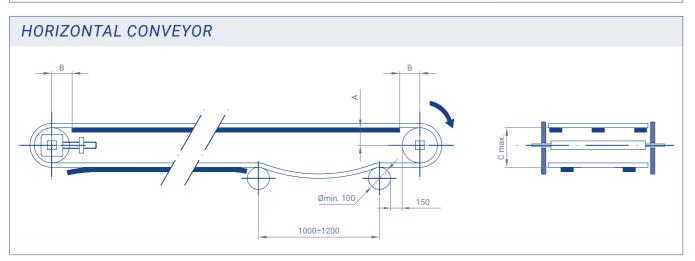
SPROCKETS AND WEARSTRIPS

		Minimum quantity of sprockets per	Minimum quan	tity of wearstrips
Belt nomina	l width (mm)	shaft	Transport way	Return way
80	144	1	2	2
160	432	3	2	2
448	720	5	3	2
736	1008	7	5	3
1024	1296	9	6	4
1312	1584	11	7	5
1600	1872	13	9	6
1888	2160	15	10	7
2176	2448	17	11	8
2464	2736	19	12	9
2752	3024	21	14	10
3040	3312	23	15	11
3328	3600	25	16	12
3616	3888	27	18	13

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Minimum quantity = —	Belt width (mm)
Willimum quantity = —	150 mm

This amount must always be odd.


To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.

Technical sheets //

Series E80

ELEVATING CONVEYOR WITH FLIGHTS D Q R min. 150 R min. 150 Belt width Belt width C max Flight support if belt width ≥ 600

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.

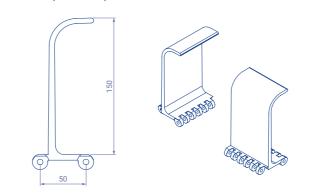
[D] If sprockets are used in the inflexion shaft, do not retain the central one.

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	А	B max.	C max.
8	130,65	58	60	135
10	161,80	72	76	165
12	193,18	89	78	200
16	256,29	120	80	260

FLIGHTS

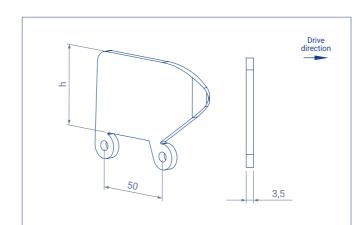

The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.

They have two faces, streamline and no cling, both can be used in one way or another one according to the need. Its non-stick side has ribs that project over the surface to prevent the product from sticking.

Accessories	Height (h)	Materials
Straight flight streamline + no cling	25-50 75-100 150	Polypropylene Polyethylene Acetal
Bent flight	45-70 90-140	Polypropylene Polyethylene Acetal
Scoop flight	150	Polypropylene Polyethylene


SCOOP FLIGHT

Eurobelt provides scoop flight type, which retains the product, mainly in bulk, in large inclines by making the most of your ability.



BENT FLIGHT

Bent flights are available for applications where maximum flight capacity is required at steep inclines

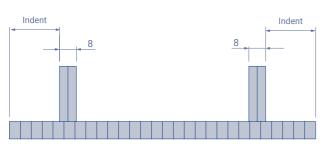
SIDE GUARDS

The side guards are plastic accessories that act as wingers while accompanying the movement, they are inserted

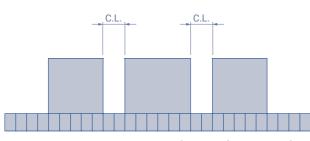
into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

Possibility of lowering the standard height for special applications

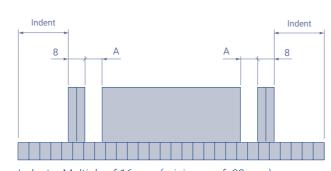
Height (h)	Materials
50	Polypropylene
75	Polyethylene
100	Acetal


TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

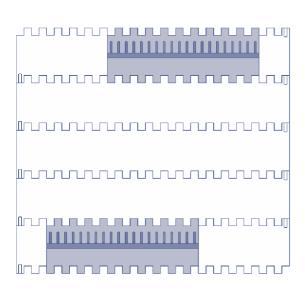
BELT WITH ONLY FLIGHTS


Indent = Multiple of 16 mm (minimum of 32 mm) Distance between flights = Multiple of 100 mm

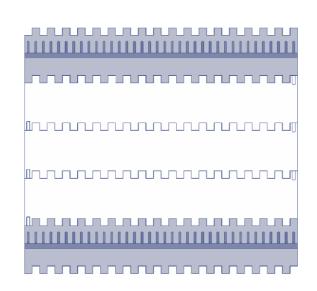
BELT WITH ONLY SIDE GUARDS


Indent = Multiple of 16 mm (minimum of 32 mm)

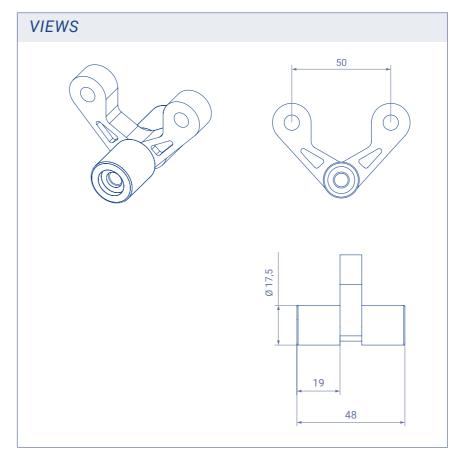
BELT WITH LONGITUDINAL CUTS


Flight longitudinal cut = Multiple of 16 mm (minimum of 32 mm)

BELT WITH FLIGHTS AND SIDE GUARDS

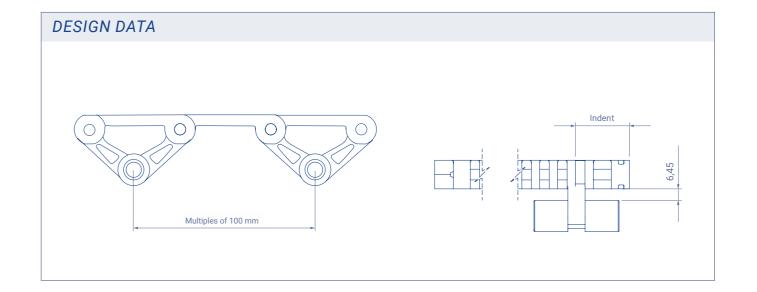


Indent = Multiple of 16 mm (minimum of 32 mm)


BELT WITH ZIG-ZAG FLIGHTS

BELT WITH FLIGHTS WITHOUT INDENT

HOLD-DOWN ROLLERS


They are used to fasten the belt to the conveyor in all the inflexions.

In applications in which the belt must be submerged, they are placed in the middle of the belt to prevent it from getting bent due to the flotation.

They will roll along rails fastened throughout the conveyor structure. It is recommended to place wearstrips to avoid the wear owing to rolling as far as possible.

The distance between the side edge of the belt and the centre of the hold-down roller (indent) must be a multiple of 8 mm + 4 mm.

Hold-down rollers can be used with any sprockets in this series.

This series is designed to be used both in straight and curved conveyors.

The pitch of 25 mm and an open area of 42%, makes it ideal for all kinds of applications that require great drain or passage of airflow through it, such as lines of cooling.

In addition, and thanks to its geometry, specially designed for such, it can rotate in very small radio, reducing the spaces inside factories.

With a rod diameter of 6 mm and a blockage with retainer rings, ensures good operation with high loads.

Belt pitch	25 mm
Belt width	Multiples of 20 mm
Rod diameter	6 mm
Drive system	Hinge
Ø min direct rotation roller	35 mm
Ø min reverse rotation roller	100 mm

Belt surface	Belt material	Rod material	Belt res (kg Straight (kg/m)	/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Retention system
	PP-Polypropylene	POM - Acetal	2000	*	5,33	+1 to +90	W - G	42%		
Flush Grid without tab	POM - Acetal	PBT	3600	*	7,67	-50 to +65	В	Maximum	12 mm	Clip
	POW - Acetai	POM - Acetal	3550	*	7,43	-40 to +90	В	[22 x 5] mm		
	•								•	
	PP-Polypropylene	POM - Acetal	2000	*	5,33	+1 to +90	W - G	17%		Clip
Flush Grid with tab	POM - Acetal	PBT	3600	*	7,67	-50 to +65	В	Maximum		
		POM - Acetal	3550	*	7,43	-40 to +90	В	[22 x 5] mm		
	•								•	
	PP-Polypropylene	POM-Acetal	2390	*	10,27	+5 to +90	В			
	PP-Polypropylene	PK-Polyketone	2190	*	10,10	+5 to +80	В	42%		
High Deck	DOM Asstal	PK-Polyketone	3270	*	15,35	-30 to +80	В	Maximum	22 mm	Clip
	POM - Acetal	POM-Acetal	3780	*	15,52	-40 to +90	В	[22 x 5] mm		
	PK-Polyketone	PK-Polyketone	2540	*	13,93	-30 to +80	*1			
Flat Friction	PP-Polypropylene	POM - Acetal	*	*	*	+1 to +104	W	42% Maximum	22 mm	Clip

 $^{^{1}}W = White G = Grey N = Natural B = Blue O = Black$

Special qualities

	Contact areas	Indent	Spaces between rubber rows	Belt material	Temperature limit (°C)			Sliding rollers width	Sliding rollers material	Sliding rollers diameter	Spaces between sliding rollers
Flat Friction		Multiples of 20 mm	Multiples of	s of DD Dolypropylone		Shore A35 - grey	W				
		Minimum of 40 mm	25 mm	PP-Polypropylene	+110+104	Shore A60 - beige	W				

Series **E925**

\bigcirc

Flush Grid Without tab

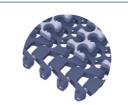
This conveyor belt has a Flush Grid geometry with 42% open area, smooth rounded ends, become a belt with a excellent drainage, very easy to clean, with good properties sliding and low costs of maintenance.

Flush Grid With tab

Their edge tabs are located at the bottom of the belt and are used to hold the itself, without interfering with the surface of transport, in such a way that the containers can stand out in the turns, beyond the belt width and even do side transfers normally in the sections of entrance exit of the conveyor. With rounded geometry in the tabs the points of friction are reduced with the profiles and the belt life is increasing.

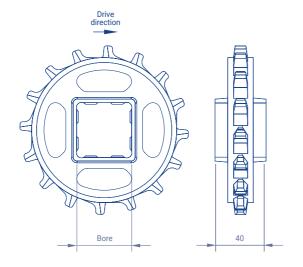
High Deck

This model is a variant that is characterized by having an area elevated, platform tupe, separated from the edege with an indent


This offers us the possibility to that the product protrudes through the ends of the band, being a excellent option for transportation bulky materials or heavy in a wide variety industries such as: logistics, pharmacist, bakery, etc.

Flat Friction Top

It is made from models of rubber on elevated raised ribs to keep intact mechanical properties, contributing with the use of rubber enough friction and grip for the transport of products in elevators and descenders, as well as transporting objects through curves with the need to maintain the product stability and control during the direction change.


¹Consult the complete colour chart: Page 176
* consult technical department

SPROCKETS

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

N° teeth Z	Ø Pitch	Bore for so	quare shaft	Hub width
		mm	inch	
12	96,59	40	1,5	40
16	128,15	40	1,5	40
20	159,81	40 - 60	1,5 - 2,5	40

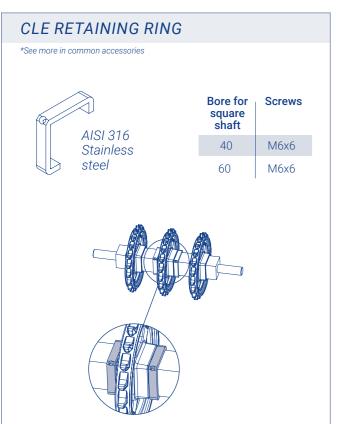
*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel

*check availability in other materials

Technical sheets //

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

Series **E925**

CONSTRUCTION DATA

SPROCKETS

WEARSTRIPS

Belt nomina	l width (mm)	Minimum quantity of sprockets per shaft	Belt nom	inal width	Minimum quantity of wearstrips			
100	180	1	(mm)		Transport way	Return way		
200	380	3	100	300	2	1		
400	580	5	320	360	2	2		
600	780	7	380	500	3	2		
800	980	9	520	600	4	2		
1000	1180	11	620	660	4	3		
1200	1320 13		680	800	5	3		

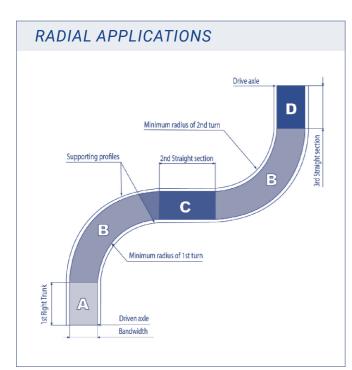
To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

HORIZONTAL CONVEYOR 1000÷1200

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.


[C] Distance between the sliding surface of the belt and the support of the return way.

[D] If sprockets are used in the inflexion shaft, do not retain the central one.

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	Α	B max.	C max.
12	96,59	42	47	96
16	128,15	58	54	127
20	159,81	73	59	159

The total length of the belt shall always be calculated using the outside length of the curved parts of the belt.

[A] The minimum length of the first straight section shall be 1,5 times the belt width. Where a shorter length is required for manufacturing requirements, consult our technical department.

[B] The turning radius depends on the nominal belt width. See factor table for each case.

[C] When two consecutive turns are made in opposite directions, the straight section between them (2nd straight section) should be twice the belt width to avoid wear on the side fastenings and high belt tension. If two turns are made in the same direction, no minimum straight length is required between the two turns.

[D] The minimum length of the last straight run (drive shaft) should be at least 1.5 times the belt width to avoid unnecessary wear on the gears and possible alignment problems.

TURNING RADIUS

Belt nominal width (mm)	FLUS	H GRID	HIGH DECK			
	Factor	Minimum radius (mm)	Factor	Minimum radius (mm)		
100	1,27	127	-	-		
200	1,60	320	1,79	359		
300	1,68	505	2,07	621		
400	1,73	690	2,21	883		
500	1,82	910	2,29	1144		
600	1,84	1106				
720	1,88	1350	 With tab, the width	of the belt will always		
800	1,88	1500	be referred to the useful surface of the			

*See more accurate minimum radius in Technical data

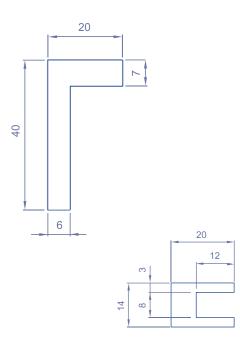
1000

be referred to the useful surface of the belt, without taking into account the tabs.

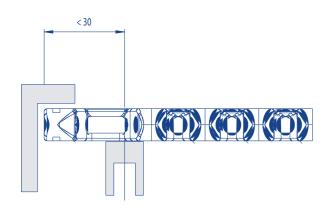
Minimum radius = Belt width (mm) x Factor

1918

HOLD-DOWN PROFILES


To make the fastening and the support of the belt, EUROBELT offers two types of hold-down profiles with different geometries.

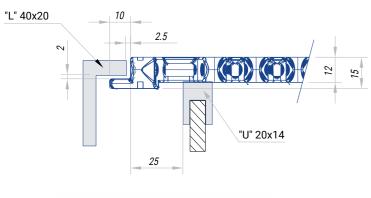
1.92


These profiles, with a low coefficient of friction, are placed between the belt and the structure of the conveyor, reducing the wear of the surfaces in contact, which contributes to prolong the life of the belt.

EUROBELT offers all the hold-down profiles in special polyethylenes with very good sliding properties and an excellent resistance to impact.

Accessories	Dimensions	Materials
Profiles in L	40 x 20 x 2000	Dalvathadana
Profiles in U	20 x 14 x 2000	Polyethylene

INSTALLATION OF PROFILES AND PLATES HEAD END 40 MM WITHOUT TAB (SL40)

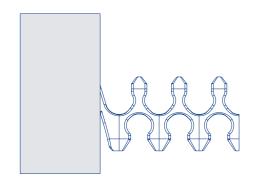


The clamping shall be carried out on the top of the belt.

The clamping profiles shall not be in contact with the belt.

WITH ONE L PROFILE AND ONE U PROFILE

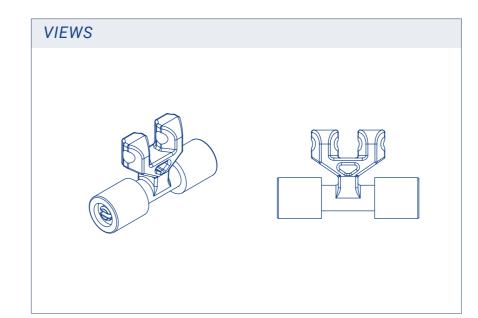
INSTALLATION OF PROFILES AND PLATES HEAD END 40 MM WITH TAB (SL40)



The fastening shall be above the tab and shall be free from interference with the product transport.

The clamping profiles shall not be in contact with the belt.

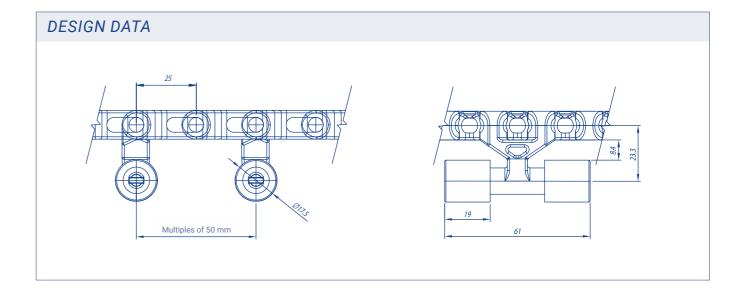
WITH ONE L PROFILE AND ONE U PROFILE


PROTECTION ZONE IN HANDLING APPLICATIONS

It is recommended to cover the inner and outer radius areas when handling on the belt to avoid entrapment.

Series **E925**

HOLD-DOWN ROLLERS


They are used to fasten the belt to the conveyor in all the inflexions.

In applications in which the belt must be submerged, they are placed in the middle of the belt to prevent it from getting bent due to the flotation.

They will roll along rails fastened throughout the conveyor structure. It is recommended to place wearstrips to avoid the wear owing to rolling as far as possible.

The distance between the side edge of the belt and the centre of the hold-down roller (indent) must be a multiple of 8 mm + 4 mm.

Hold-down rollers can be used with any sprockets in this series.

This series is designed to be able to work simultaneously in straight and curved conveyors.

With a pitch of 30 mm and an open surface of 47%, they make it ideal for all types of applications that require large drainage or air flow passage through, such as cooling lines.

With a clamping rod diameter of 8 mm and a locking clip retention, it ensures smooth operation under high loads.

Belt pitch	30 mm
Belt width	Multiples of 25 mm
Rod diameter	8 mm
Drive system	Hinge
Ø min direct rotation roller	40 mm
Ø min reverse rotation roller	150 mm

Belt resistance Belt Temperature Standard Open Area Belt Retention

W - G - A

20 mm

Clip

+1 to +90

surface	material	material	(kg, Straight (kg/m)		weight (kg/m2)	limit (°C)	Colours ¹	+ opening dimensions	thickness	system
Flush Grid	PP-Polypropylene	POM-Acetal	2400	*	7,14	+1 to +90	W - G - A	47%	16 mm	Clin
Sin lengüeta	POM -Acetal	POW-Acetal	3800	*	9,80	-40 to +90	B-N	Maximum [22 x 5] mm	10111111	Clip
Flush Grid	PP-Polypropylene	DOM Apotal	2400	*	7,14	+1 to +90	W - G - A	47%	19 mm	Clip
Con lengüeta	POM -Acetal	POM-Acetal	3800	*	9,80	-40 to +90	B - N	Maximum [22 x 5] mm		
Conic	PP-Polypropylene	POM-Acetal	2400	*	*	+1 to +90	*1	47%	10 5	Clin
Conic	POM -Acetal	POW-Acetal	3800	*	*	-40 to +90	*1	Maximum [22 x 5] mm	19,5 mm	Clip
Conic	PP-Polypropylene	POM-Acetal	2400	*	*	+1 to +90	W - G - A	47%	19,5 mm	Clip
Friction	POM -Acetal	r Olvi-Acetal	3800	*	*	-40 to +90	B-N	Maximum [22 x 5] mm		Olip

PP-Polypropylene

POM -Acetal

POM-Acetal

Special qualities

Sliding

rollers

Belt

17

17

Belt

	Indent (mm)	Turning radius	Rubber hardness	Spaces between conic rows	Spaces between rubber rows	Spaces between rollers rows	Sliding rollers diameter	Sliding rollers width	Sliding rollers material
Conic	37,5 - 62,5 - 87,5	*		Multiples of 30 mm					
Conic Friction	37,5 - 62,5 - 87,5	*	Shore A60		Multiples of 30 mm Minimum of 60 mm				
Sliding Rollers	37,5 - 62,5 - 87,5	*				Multiples of 30 mm	20	10 mm	Acetal

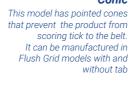
^{*}consult radius table

\odot

Flush Grid Without tab

This conveyor belt has a Flush Grid geometry with 47% open area, smooth rounded ends, become a belt with a excellent drainage, very easy to clean, with good properties sliding and low costs of maintenance.

 \bigcirc


0 0

Flush Grid With tab

Their edge tabs are located at the bottom of the belt and are used to hold the itself, without interfering with the surface of transport, in such a way that the containers can stand out in the turns, beyond the belt width and even do side transfers normally in the sections of entrance exit of the conveyor. With rounded geometry in the tabs the points of friction are reduced with the profiles and the belt life is increasing.

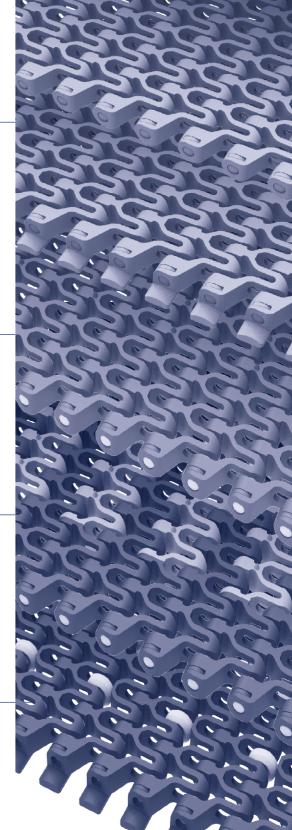
Conic

\bigcirc

Conic Friction

Designed with modules manufactured in rubber that are inserted between others, in order some good features of friction. It has pyramidalshaped elevations transversely arranged for

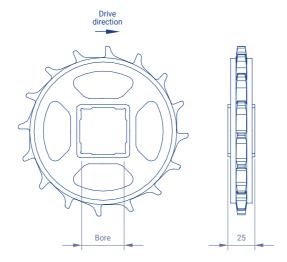
Sliding rollers


With rollers inserted in its surface that rotates in moments of accumulation of load, prevent crushing and wear on the base of the product. This conveyor belt is primarily

designed to solve the problems of transport of boxes and/or container

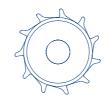
¹W = White G = Grey N = Natural B = Blue O = Black ¹Consult the complete colour chart: Page 176

^{*} consult technical department


Series E930

SPROCKETS

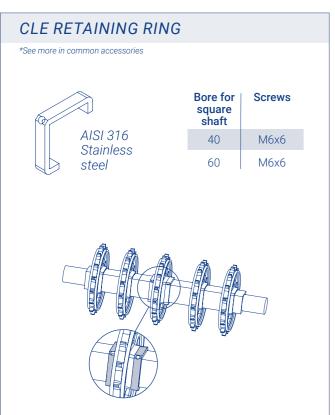

We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

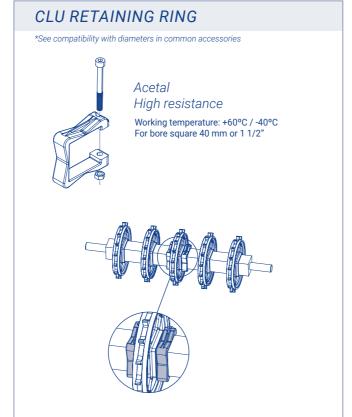

N° teeth Z	Ø Pitch	Bore for square shaft		Hub width
		mm	inch	
11	106,5	40	1,5	25
16	153,5	40-60	1,5	25
20	191,5	40-60	1,5	25

*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polypropilene, polyacetal and stainless steel *check availability in other materials

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

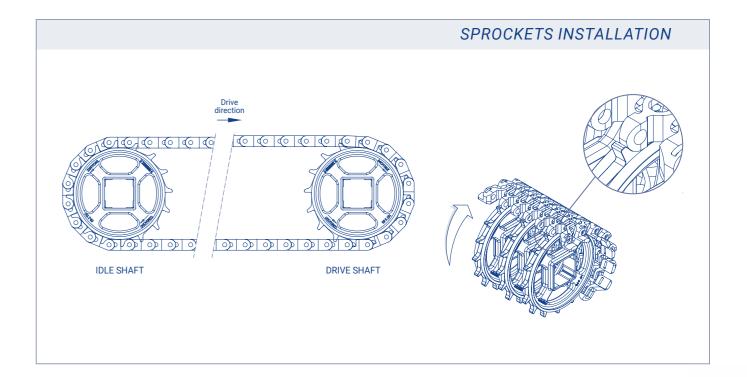
The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

Series E930

CONSTRUCTION DATA

SPROCKETS AND WEARSTRIPS

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:


vidth (mm)
00 mm

This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.

Belt nominal v		width (mm)	Minimum quantity of sprockets per	Minimum quantity of wearstrips		
			shaft	Transport way	Return way	
	100	150	1	2	2	
	175	300	3	2	2	
	325	500	5	3	3	
	525	700	7	4	3	
	725	900	9	5	4	
	925	1100	11	6	4	
	1125	1300	13	6	5	
	1325	1500	15	7	6	
	1525	1700	17	8	6	
	1725	1900	19	9	7	
	1925	2100	21	10	8	
	2125	2300	23	11	8	
	2325	2500	25	11	9	
	2525	2700	27	12	10	

HORIZONTAL CONVEYOR 1000÷1200

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.

[D] If sprockets are used in the inflexion shaft, do not retain the central one.

[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	A	B max.	C max.
11	106,5	44	50	115
16	153,5	69	65	160
20	191,5	87	75	200

RADIAL APPLICATIONS Minimum radius of 2nd turn Supporting profiles 2nd Straight section C Minimum radius of 1st turn

The total length of the belt shall always be calculated using the outside length of the curved parts of the belt.

[A] The minimum length of the first straight section shall be 1,5 times the belt width. Where a shorter length is required for manufacturing requirements, consult our technical department.

[B] The turning radius depends on the nominal belt width. See factor table for each case.

[C] When two consecutive turns are made in opposite directions, the straight section between them (2nd straight section) should be twice the belt width to avoid wear on the side fastenings and high belt tension. If two turns are made in the same direction, no minimum straight length is required between the two turns.

[D] The minimum length of the last straight run (drive shaft) should be at least 1.5 times the belt width to avoid unnecessary wear on the gears and possible alignment problems.

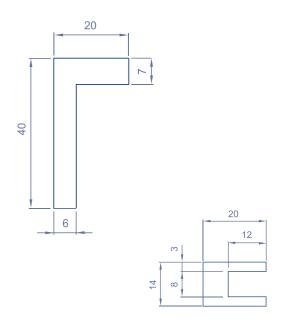
TURNING RADIUS

Belt nominal width (mm)	Factor	Minimum radius (mm)
100	1,35	135
200	1,70	340
300	1,83	550
400	1,95	780
500	1,96	980
600	2,10	1260
700	2,12	1484
800	2,18	1744
1000	2,20	2200

*See more accurate minimum radius in Technical data

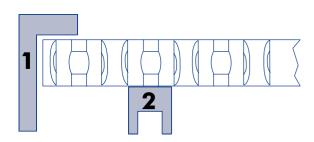
Minimum radius = Belt width (mm) x Factor

With tab, the width of the belt will always be referred to the useful surface of the belt, without taking into account the tabs.

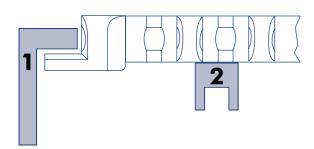

HOLD-DOWN PROFILES

To make the fastening and the support of the belt, EUROBELT offers two types of hold-down profiles with different geometries.

These profiles, with a low coefficient of friction, are placed between the belt and the structure of the conveyor, reducing the wear of the surfaces in contact, which contributes to prolong the life of the belt.

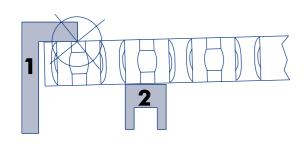

EUROBELT offers all the hold-down profiles in special polyethylenes with very good sliding properties and an excellent resistance to impact.

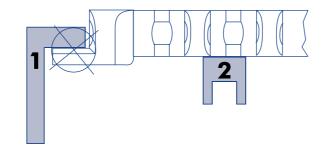
Accessories	Dimensions	Materials
Profiles in L	40 x 20 x 2000	Deliverblevilene
Profiles in U	20 x 14 x 2000	Polyethylene


Series E930

INSTALLATION OF PROFILES AND PLATES BELT WITHOUT EDGE TAB

The clamping shall be carried out on the top of the belt.

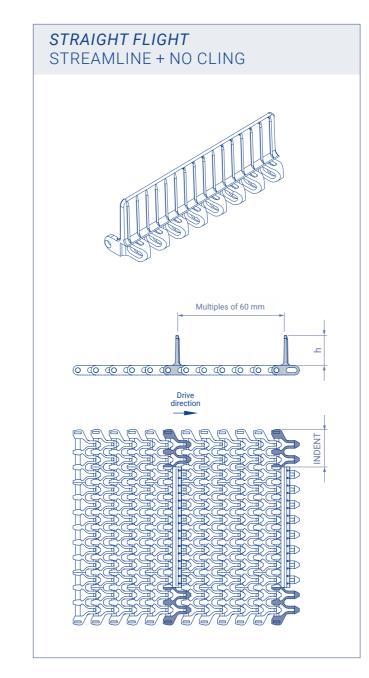

INSTALLATION OF PROFILES AND PLATES BELT WITH EDGE TAB



The fastening shall be above the tab and shall be free from interference with the product transport.

The clamping profiles shall not be in contact with the belt.

PROTECTION ZONE IN HANDLING APPLICATIONS



The hold-down profiles must not be in contact with the belt.

In cases in which there is going to be some manipulation on the belt, the lateral edges should be covered with a protection of 20 mm approximately, as a safety measure.

Series E930

FLIGHTS

The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the

Its non-stick side has ribs that project over the surface to prevent the product from sticking.

Their edges are completely rounded to avoid any damage of the product.

They can be used both in right and in curve sections.

It is possible to cut down the standard height for special applications.

Indent	Height (h)	Materials
37,5 mm 62,5 mm 87,5 mm	25 mm 50 mm	Polypropylene Acetal

Series **Q50** op quickbelts

Quickbelts is a new generation of belts with an assembly system without connecting rods.

With just one click, your quickbelts fit together without extra fasteners needs, making assembly much quicker and easier.

Due to its special geometry, the belt itself develops a slight lift at the moment of transfer, which makes it easier to remove the product.

In addition, its hole-free structure allows an excellent cleaning.

P	Belt pitch	50 mm
A	Belt width	Multiples of 40 mm
Nie Nie	Rod	No
	Drive system	Central
	Ø min direct rotation roller	75 mm
0	Ø min reverse rotation roller	150 mm
NSF	Certificate	Q50 Flat Top NSF 14159-3

Belt surface	Belt material	Belt resistance (kg/m)	Belt weight (kg/m2)	Temperature limit (°C)	Standard Colours ¹	Open Area + opening dimensions	Belt thickness	Food contact
Flat Top	PK - Polyketone	2250	11,85	-30 to +80	B-W	0%	16 mm	T FDA
Conic	PK - Polyketone	2250	12,08	-30 to +80	B-W	0%	16 mm	T FDA

¹W = White G = Grey N = Natural B = Blue O = Black

Special qualities

	Indent	Indent surface	Height cone	
Conic	40 mm	Flat Top	3 mm	

Series **Q50** op quickbelts

Flat Top

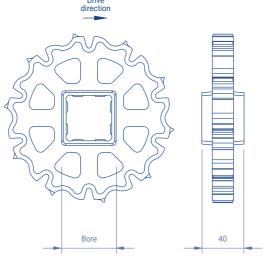
It is manufactured in Polyketone, a new polymeric material that offers greater resistance to impact, wear and cuts, being superior to acetal. It has a patented non-stick geometry with parallel moving faces to facilitate product release on returns. This belt is designed to ensure fast and efficient cleaning. It has an exclusive design with transversal channels and holes that allow the entry of a jet of pressure water to remove remaining particles from the

surface of the belt. Another important feature is its low maintenance system. With minimal expense, it can operate without interruption and without the need for special tools in the event of a damaged module replacement.

Is equipped with a series of cones on the upper surface to offer effective conveying solutions, especially in inclined applications that help to grip and stabilise the conveyed items. It will be mainly used during the processing of irregularly shaped foodstuffs that we wish to grip and stabilise for any reason during their

Series Q50 op quickbelts

op quickbelts


Series Q50

SPROCKETS

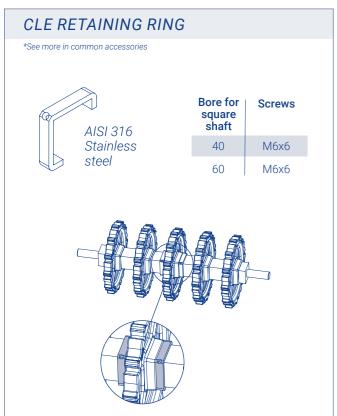
We are also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

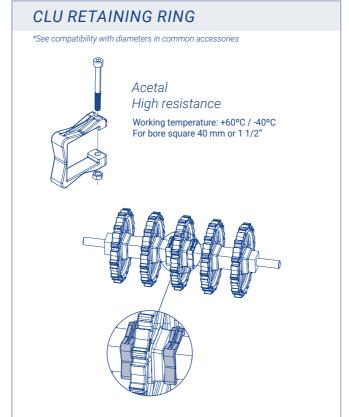
Nº teeth Z	Ø Pitch	Bore for s	quare shaft	Hub width
		mm	inch	
8	130,65	40	1,5	40
10	161,80	40 - 60	1,5 - 2,5	40
12	193,1	40 - 60	1,5 - 2,5	40

*Consult the technical department for the availability of split sprocket or mechanized sprocket with different numbers of teeth.

It is manufactured in polyketone

WITH KEYWAY


WITHOUT KEYWAY


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

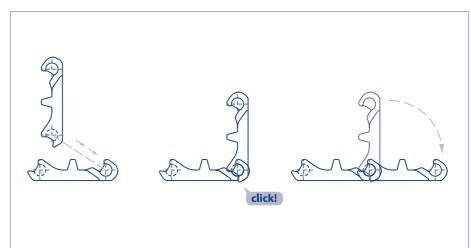
Additionally, the effects of temperature cause the belt to expand

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained

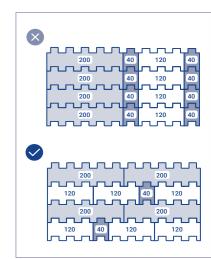
CONSTRUCTION DATA

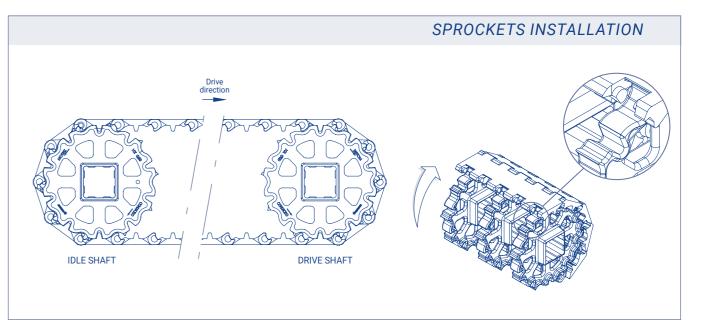
To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

Minimum quantity = _	Belt width (mm)
Willimum quantity = =	160 mm

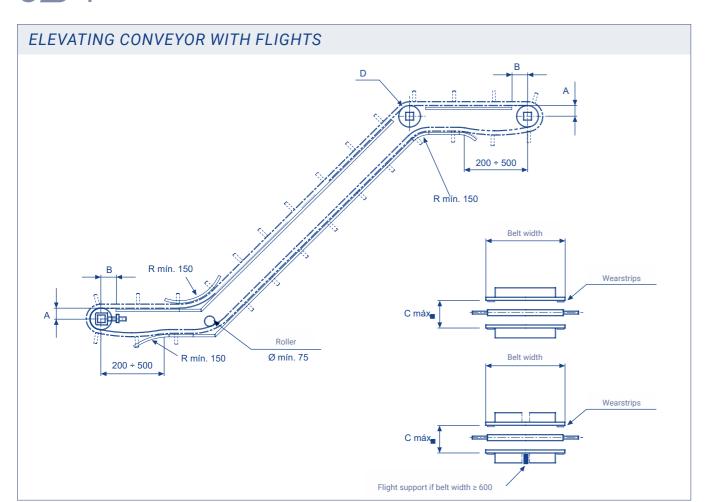

This amount must always be odd.

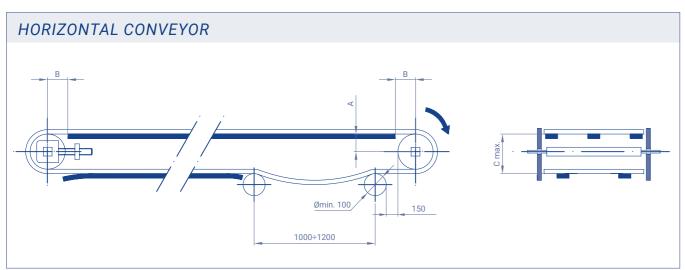
To calculate the quantity of supports, the weight of the product to be transported must be taken into account.


The distance between supports should not exceed 230 mm in the transport way or 300 mm in the return way.


SPROCKETS AND WEARSTRIPS

	Minimum quantity of		quantity of strips
Belt nominal width (mm)		Transport way	Return way
150	1	2	2
440	3	2	2
680	5	3	3
800	5	4	3
880	7	4	3
1120	7	5	4
1200	9	6	4
1360	9	6	5
1440	9	7	5
	150 440 680 800 880 1120 1200 1360	width (mm) quantity of sprockets per shaft 150 1 440 3 680 5 800 5 880 7 1120 7 1200 9 1360 9	width (mm) wear sprockets per shaft Wear Transport way 150 1 2 440 3 2 680 5 3 800 5 4 880 7 4 1120 7 5 1200 9 6 1360 9 6



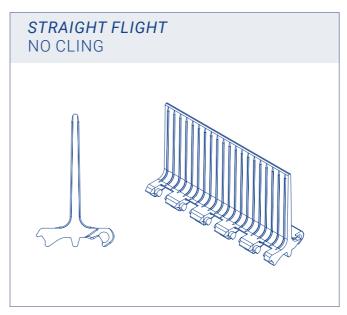

1480

[A] Distance between the sliding surface of the belt and the centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning of the sliding surface.

[C] Distance between the sliding surface of the belt and the support of the return way.

[D] If sprockets are used in the inflexion shaft, do not retain the central one.


[R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

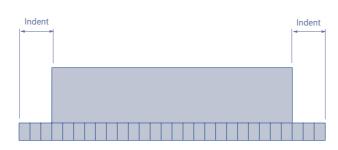
In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth Z	Ø Pitch	Α	B max.	C max.
8	130,6	58	60	135
10	161,8	72	76	165
12	193,1	89	78	200

Series **Q50**To quickbelts

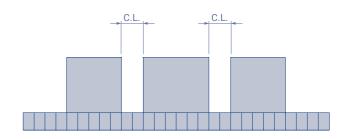
FLIGHTS

The flights are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.


No cling flights are available on both sides, mainly for those applications with very sticky products, normally transported in bulk and that cover the entire space between rows of consecutive flights.

Possibility of lowering the standard height for special applications

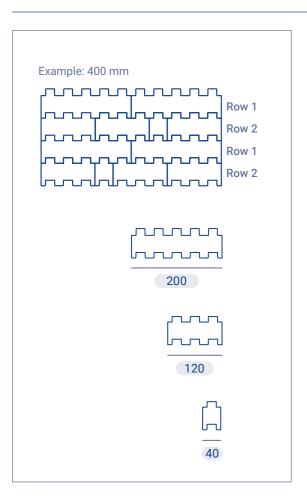
Accessories	Height (h)	Materials
Straight flight no cling	100	Polyketone


TECHNICAL DATA: FLIGHTS AND SIDE GUARDS

BELT WITH ONLY FLIGHTS

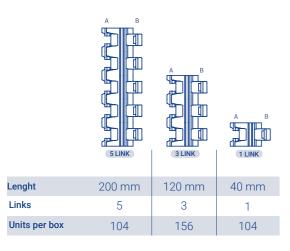
Indent = Multiple of 40 mm (minimum of 40 mm) Distance between flights = Multiple of 100 mm

BELT WITH LONGITUDINAL CUTS



Flight longitudinal cut = Multiple of 40 mm (minimum of 40 mm)

Series **Q50** op quickbelts


CONFIGURATION TABLE

Q50 FLAT TOP

DELIVERY TIME

No more waiting for your belts to be manufactured, you can order the parts and have them assembled at your facility in record time.

Width 160 ROW 1 40 120 ROW 2 120 40 Width 200 ROW 2 200 Width 240 ROW 1 120 120 ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 40 Width 320 ROW 2 120 120 40
ROW 2 120 40 Width 200 ROW 1 200 ROW 2 200 Width 240 ROW 1 120 120 ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 Width 320
Width 200 ROW 1 200 ROW 2 200 Width 240 ROW 1 120 120 ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 Width 320
ROW 1 200 ROW 2 200 Width 240 ROW 1 120 120 ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 Width 320
ROW 2 200 Width 240 ROW 1 120 120 ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 40 Width 320
Width 240 ROW 1 120 120 ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 40 Width 320
ROW 1 120 120 ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 40 Width 320
ROW 2 200 40 Width 280 ROW 1 40 120 120 ROW 2 120 120 40 Width 320
Width 280 ROW 1 40 120 120 ROW 2 120 120 40 40 40 40 40 40 40
ROW 1 40 120 120 ROW 2 120 120 40 Width 320
ROW 2 120 120 40 Width 320
Width 320
DOW 1 400 600
ROW 1 120 200
ROW 2 200 120
Width 360
ROW 1 120 40 200
ROW 2 200 40 120
Width 400
ROW 1 200 200
ROW 2 120 120 40 120
Width 440
ROW 1 200 40 200
ROW 2 120 200 120
Width 480
ROW 1 200 120 40 120
ROW 2 120 40 120 200
Width 520
ROW 1 120 200 200
ROW 2 200 200 120
Width 560
ROW 1 120 40 200 200
ROW 2 200 200 40 120
Width 600
ROW 1 200 200 200
ROW 2 120 120 120 120 120 120
Width 640
ROW 1 200 40 200 200
ROW 2 120 40 120 120 120 120 120
Width 680
ROW 1 120 120 40 200 200
ROW 2 200 200 40 120 120
Width 720
ROW 1 120 200 200 200
ROW 2 200 200 200 120
Width 760
ROW 1 120 40 200 200 200
120 22 200 200
ROW 2 200 200 200 40 120
NOTE TO THE TOTAL PROPERTY OF THE PROPERTY OF
Width 800
NOTIZE STORY

Series **Q50** op quickbelts

CONFIGURATION TABLE

Q50 FLAT TOP

200

لححما

120

 \Box

40

Width 84	0					
ROW 1	200	200	200 1	20 120		
ROW 2	120 120	200	200	200		
Width 88	0					
ROW 1	200	200	200 40	120 120		
ROW 2	120 120	40 200	200	200		
Width 92	0					
ROW 1	120 20	0 200	200	200		
ROW 2	200	200	200		20	
Width 96	0					
ROW 1	_	200 2	200 2	00 2	00	
ROW 2	200	200	200		120	
Width 10	00				<u> </u>	
ROW 1	200	200	200	200	200	
ROW 2	120 120	120 120		200	120	
Width 10	•		_			
ROW 1	200 40	200	200	200	200	
ROW 2	120 20				120	
Width 10						
ROW 1	120 120	120 120	200	200	200	
ROW 2	200	200		20 120	120 120	
Width 11					.20 .20	
ROW 1	120 20	0 200	200	200	200	
ROW 2	200	200	200	200	200 120	
Width 11						
ROW 1		200 2	200 2	00 2	00 200	
ROW 2	200	200 2	200	200	200 40 120)
Width 12			200			
ROW 1	200	200	200	200	200 200	
ROW 2	120 120	200	200	200		120
Width 12					.20 .20	
ROW 1	120 120	200	200	200	200	200
ROW 2	200	200	200	200	200 200 120	200 120
Width 12		200	200	200	200 120	120
ROW 1		000	000	000	00 100 100	100
	200 120 120	200 120 120	200 200	200 1	20 120 120 200	200
ROW 2		120 120	200	200	200	200
Width 13		000	000	000		100
ROW 1	200 120 20	200 0 200	200 200	200 200	200 200	
ROW 2		200	200	200	200	200
Width 13						
ROW 1					00 200	200
ROW 2	200	200	200	200	200 200	40 120
Width 14						
ROW 1	200	200	200	200	200 200	
ROW 2	120 120	200	200	200	200 120	0 120 120
Width 14	40					
ROW 1	120 120	200	200	200		200 200
ROW 2	200	200	200	200	200 200	120 120
Width 14	80					
ROW 1	200	200	200	200	200 120	120 120 120
ROW 2	120 120	120 120	200	200	200	200 200

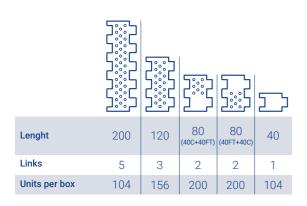
Q50 CONIC

CONFIGURATION TABLE

CONFIGURATION TABLE

Series **Q50** op quickbelts

Q50 CONIC


40 Flat Top

80 Conic + Flat Top 80 Flat Top + Conic

Example: 400 mm Row 2 Conic 200 120 Conic + Flat Top 80 Flat Top + Conic 80 Flat Top 40

DELIVERY TIME

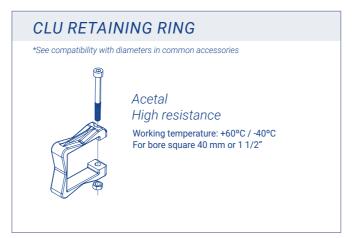
No more waiting for your belts to be manufactured, you can order the parts and have them assembled at your facility in record time.

W: 4th 0.40			40	Flat Top
Width 240 ROW 1 40 1	00		80	Conic + Flat Top
ROW 1 40 1 ROW 2 80	20 80 120 40		80	Flat Top + Conic
Width 280	120 40		120	Conic
D014/4	000]
ROW 1 40 ROW 2 80	200 40 120 80		200	Conic
	120 80			
Width 320 ROW 1 40	200	80		
ROW 2 80	200	40		
Width 360	200			
501114	20 120	80		
ROW 2 80	120 120			
Width 400	120 12			
ROW 1 40	200	120 40		
ROW 2 80	120 12			
Width 440				
ROW 1 40	200	120 80		
ROW 2 80	200	120 40		
Width 480				
ROW 1 40	200	200	40	
ROW 2 80	120		0	
Width 520				
ROW 1 40	200	200	80	
ROW 2 80	200	200	40	
Width 560				
ROW 1 40	200	120 120	80	
ROW 2 80	200	120	120 40	
Width 600				
ROW 1 40	200	200	120 40	
ROW 2 80	200	120	120 8 <mark>0</mark>	
Width 640				
ROW 1 40	200	200	120 80	
ROW 2 80	200	200	120 40	
Width 680				
ROW 1 40	200	200	200 40	
ROW 2 80	200	200	120 8 <mark>0</mark>	
Width 720			<u>.</u>	_
ROW 1 40	200	200		0
ROW 2 80	200	200	200	40
Width 760				
ROW 1 40 80	200	200	120 120	80
	200	200	120 120	40
Width 800				
ROW 1 40 ROW 2 80	200	200	200 120 120 120	120 40 0 80
	200	200	120 120	
Width 840 ROW 1 40	200	200	200	120 80
ROW 1 40	200	200	200	120 80
NOW Z	200	200	200	120 10

Width 880								40	Flat Top
ROW 1 40	200	200	200	200 40				80	Conic +
ROW 2 80	200	200	200	120 80					Flat Top
Width 920								120	Conic
ROW 1 40	200	200	200	200 80			2	.00	Conic
ROW 1 40	200	200	200	· · · · · · · · · · · · · · · · · · ·	40			00	COILIC
	200	200	200	200	+0				
Width 960									
ROW 1 40	200	200		20 120	80				
ROW 2 80	200	200	200	120 120	40				
Width 1000									
ROW 1 40	200	200	200		20 40				
ROW 2 80	200	200	200	120 120	80				
Width 1040									
ROW 1 40	200	200	200	· · · · · · · · · · · · · · · · · · ·	20 8 <mark>0</mark>				
ROW 2 80	200	200	200	200	120 <mark>40</mark>				
Width 1080									
ROW 1 40	200	200	200	200	200 40				
ROW 2 80	200	200	200	200	120 80				
Width 1120									
ROW 1 40	200	200	200	200	200 8	0			
ROW 2 80	200	200	200	200	200	40			
Width 1160									
ROW 1 40	200	200	200	200 1	20 120	80			
ROW 2 80	200	200	200	200		0 40			
Width 1200									
ROW 1 40	200	200	200	200	200	120 40			
ROW 2 80	200	200	200	200	120 120				
Width 1240									
ROW 1 40	200	200	200	200	200	120 80			
ROW 2 80	200	200	200	200	200	120 40			
Width 1280									
	200	200	200	200	200	200 40			
ROW 2 80	200	200	200	200	200	120 80			
Width 1320	200	200	200	200	200	120 00			
	200	200	200	200	200	200			
ROW 1 40 ROW 2 80	200	200	200	200	200	200 8 200	40		
	200	200	200	200	200	200	+0		
Width 1360									
ROW 1 40	200	200	200	200		120 120	8 <mark>0</mark>		
ROW 2 80	200	200	200	200	200	120 120	40		
Width 1400									
ROW 1 40	200	200	200	200	200		20 40		
ROW 2 80	200	200	200	200	200	120 120	80		
Width 1440									
ROW 1 40	200	200	200	200	200	, 	20 80		
ROW 2 80	200	200	200	200	200	200	120 <mark>40</mark>		
Width 1480									
ROW 1 40	200	200	200	200	200	200	200 40		
ROW 2 80	200	200	200	200	200	200	120 8 <mark>0</mark>		

5 / Common Accessories

Common accessories


RETAINING RINGS

Eurobelt retaining rings are used to secure the central gear on or contract. the drive and driven shafts. They are placed on both sides of the central sprocket and are part of the self-guiding system of the modular belts, preventing the sprocket from sliding along the shaft and avoiding lateral displacements of the belt.

Additionally, the effects of temperature cause the belt to expand

CLE RETAINING I	RING	
*See more in common accessories		
AISI 316 Stainless steel	Bore for square shaft	Screwss
	20	M5x5
	40	Мбхб
	60	Мбхб
	90	Мбхб

The rest of the sprockets slide freely along the shaft, allowing them to adapt to the variations and lateral movements of the belt. This ensures that the correct tooth position is maintained at all times.

Common accessories

COMPATIBILITY WITH SPROCKETS

CLU RETAINING RING

N° Teeth (Z)	Ø Pitch	COMPATIBLE
SERIES C12		
Z11	42,59	NO
Z16	61,51	NO
Z20	76,7	NO
Z26	99,55	YES
Z31	118,61	YES
Z40	152,94	YES
SERIES F12		
Z13	50,98	NO
Z20	77,99	NO
Z38	147,74	YES
SERIES E20		
Z8	52,2	NO
Z16	102,5	YES
Z24	153,2	YES
SERIES A24		
Z 7	55,31	NO
Z13	100,25	YES
Z20	153,41	YES
Z25	191,48	YES
SERIES E30-E	31-E32	
Z 6	60	NO
Z 9	87,7	NO
Z11	106,5	YES
Z14	134,8	YES
Z16	153,5	YES
Z18	172,7	YES
Z20	191,5	YES
SERIES E40-E	41	
Z8	104,5	YES

N° Teeth (Z)	Ø Pitch	COMPATIBLE
SERIES E50		
Z6	100	NO
Z8	135,65	YES
Z10	116,80	YES
Z16	256,29	YES
SERIES B50		
Z6	100	NO
Z8	130,65	YES
Z10	161,80	YES
Z12	193,18	YES
Z16	256,29	YES
SERIES D50		
Z10	161,8	YES
Z12	193,2	YES
Z16	256,3	YES
SERIES E80		
Z8	130,6	YES
Z10	161,8	YES
Z12	193,2	YES
Z16	256,3	YES
SERIES E925		
Z12	96,59	NO
Z16	128,15	NO
Z20	159,81	NO
SERIES E930		
Z11	106,5	NO
Z16	153,5	NO
Z20	191,5	NO
SERIES Q50		
Z8	130,65	YES
Z10	161,80	YES
Z12	193,18	YES

EASY AND QUICK INSTALLATION

129,4

167,1

167,1

205

255,7

YES

YES YES

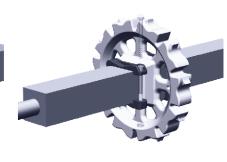
YES

YES

Z10

Z13

Z13D


Z16

Z20

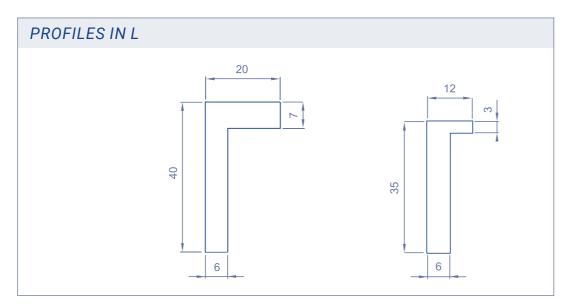
1. Direct installation disassembling the shaft.

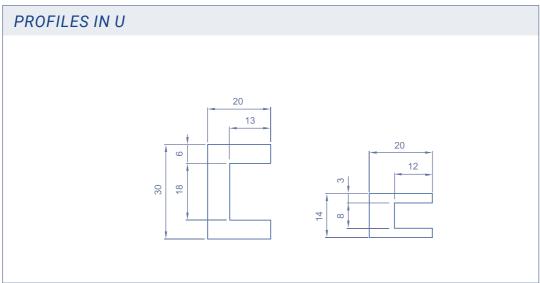
opening the ring.

without 2. Easy insertion into the shaft by 3. Nut and bolt fastening of the ring ensures reliable tightening at low cost.

Common accessories

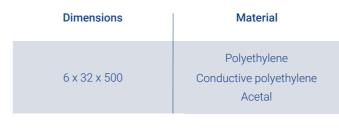
HOLD-DOWN PROFILES

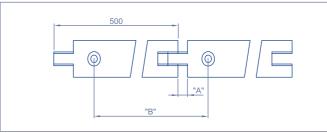

Accessories	Dimensions	Material
Profiles in L	40 x 20 x 2000	
Profiles in L	35 x 12 x 2000	Polyethylene special high
Profiles in U	20 x 30 x 2000	density
Profiles III 0	20 x 14 x 2000	


To make the fastening and the support of the belt, EUROBELT has designed two types of hold-down profiles with different geometries, but with the same uses and services.

In movement, a negative frictional force is produced between the modular belt and the surface on which it slides or is supported, which is why one of the most important points in the design of your equipment for correct operation and greater durability is precisely its sliding surface.

These profiles, with a low coefficient of friction, are placed between the belt and the structure of the conveyor, reducing the wear of the surfaces in contact, which contributes to prolong the life of the belt.


EUROBELT offers all the hold-down profiles in special polyethylenes with very good sliding properties and an excellent resistance to impact.

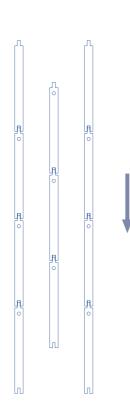


Common accessories

WEARSTRIPS

The flat wearstrips are fastened by means of flatheaded plastic screws, which contributes to obtain a smooth surface free of any possibility of hooking.

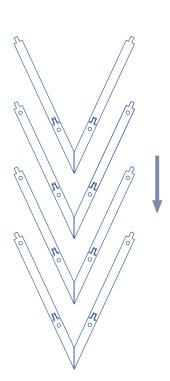
The dimensions of those screws are: M 6 x 25 mm.


Due to their dovetail design, they can adapt to possible longitudinal contractions and expansions of the belt.

The wearstrips arrangement is an important factor in the life span of a conveyor belt.

It should be chosen the most suitable configuration according to the transport needs. To calculate the quantity of supports, the weight of the product to be conveyed should be taken into account.

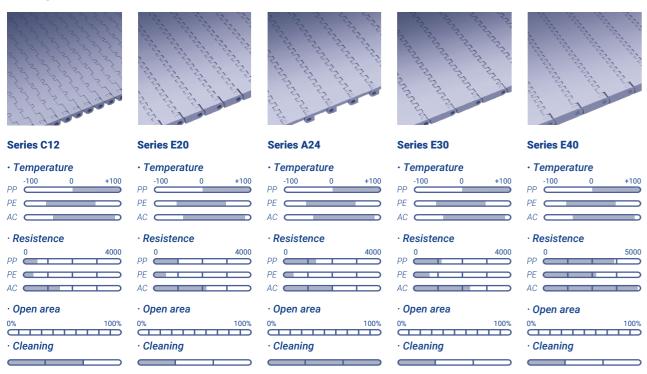
PARALLEL RUNNERS


It consists of placing the wearstrips in a parallel and continuous way along the conveyor structure. It is preferable to position them so that the joints do not coincide. This is probably the simplest and most economical configuration although, depending on the load to be transported, uneven wears can arise on the back surface of the belt. It is not advisable for applications with a very heavy load.

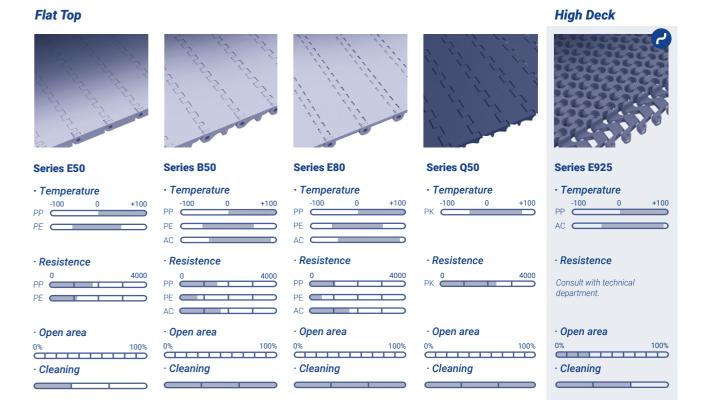
CHEVRON ARRAY

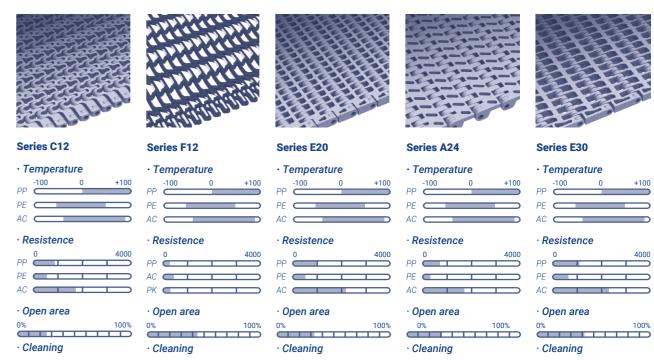
The wearstrips are placed

throughout the length and breadth of the conveyor, as shown in the picture above. The possible wear that might occur will be even all over the belt, since it is resting on the wearstrips lengthwise and breadthwise. With this angle-shaped layout the cleaning and removal of wastes are easv. It is advisable for applications bearing heavy loads or for high speeds.



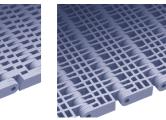
6 / Surfaces and colours

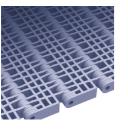

Surface Classification

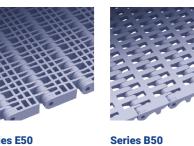

Flat Top

Surface Classification

Flush Grid




Surface Classification

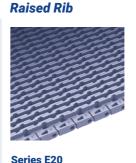

Surface Classification

Flush Grid

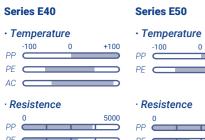
Resistence

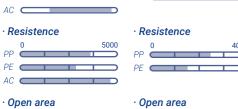
· Open area

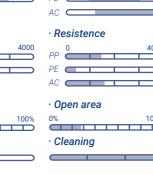
Cleaning

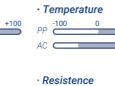


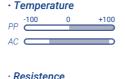

Surfaces and colours //



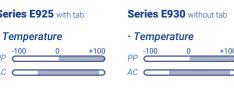




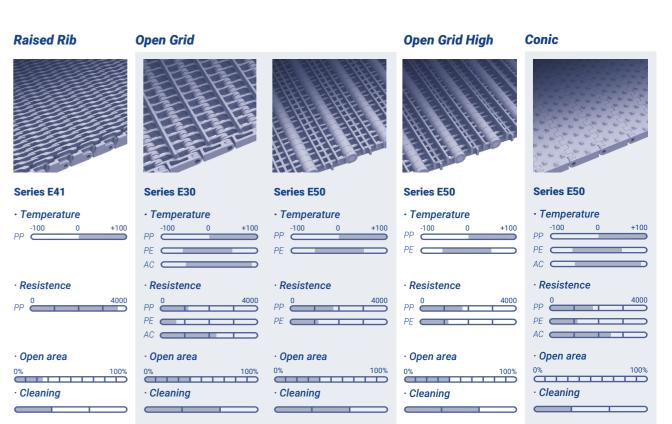


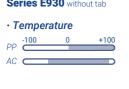

· Cleaning

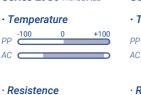
Temperature



· Cleaning



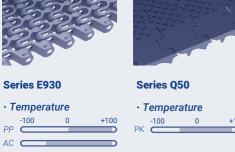


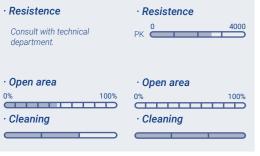

· Cleaning

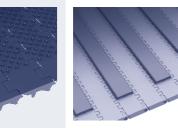
Consult with technical

· Cleaning

Series E30	Series E50
• Temperature -100 0 +100 PP	• Temperature -100 0 +100 PP PE
PP 4000	· Resistence
Open area Ow 100% Cleaning	· Open area 0% 100% · Cleaning


Conic Friction


Surface Classification


Surface Classification

Conic

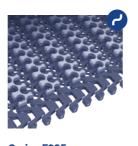
Resistence

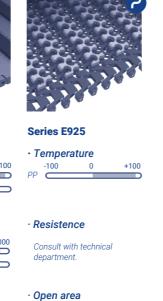
department.

Open area

Cleaning

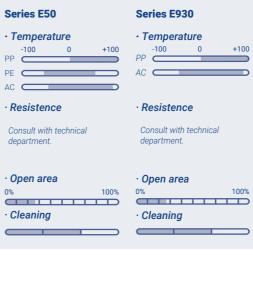
Consult with technical

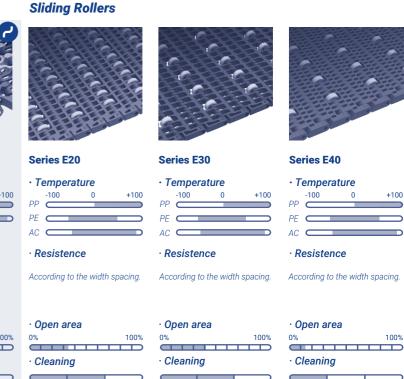

Flat Friction


· Resistence

· Open area

· Cleaning

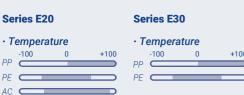

Surfaces and colours //



· Cleaning

Arrow Friction

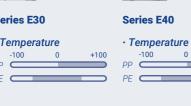
· Resistence

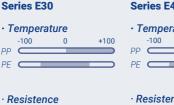

department.

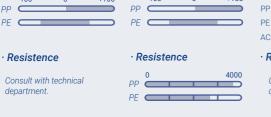
· Open area

· Cleaning

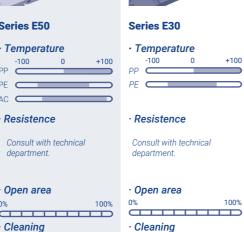
Consult with technical

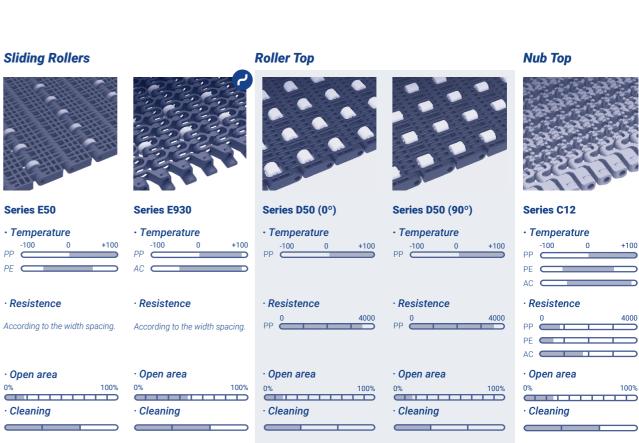




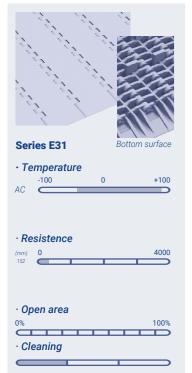

Open area

Cleaning

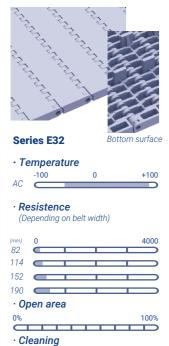



· Open area

· Cleaning



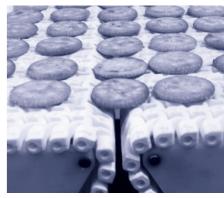
Surface Classification


Surface Classification

Flat Top (Width único / patillas inferiores)

Series E32 Flat Top Beverage sector

Series E50 Flush Grid Fish sector


Series E30 Flush Grid Dairy sector


Series E41 Raised Rib Canning sector

Series E30 Flush Grid

Series C12 Flush Grid

Series E30 Flush Grid Candy sector

Series E930 Flush Grid Vegetable sector

Classification by **Materials and colours**

Туре	RUBBER Hardness +	PP-F	olyprop	ylene	PE-Poly	ethylene	PC	M -Ace	etal	PPE	PK-Poly	/ketone
	Colours	W	G	В	N	В	W	В	N	0	W	В
SERIES Q50												
FT - FLAT TOP											•	•
CO - CONIC											•	•
SERIES C12												
FT - FLAT TOP		•		•	•	•		•	•			
FG - FLUSH GRID		•		•	•	•		•	•			
NT - NUB TOP		•		•	•	•		•	•			
SERIES F12			,	,				,				
FG - FLUSH GRID		•		•				•	•			
SERIES E20												
FT - FLAT TOP		•	•	•	•	•		•				
FG - FLUSH GRID		•	•	•	•	•		•				
RR - RAISED RIB			•					•				
TF - TRIAN FRICTION	A60 - beige	•	•	•	•	•		•				
TR - TRIAN		•		•	•	•		•				
SR - SLIDING ROLLERS		•	•	•		•		•				
SERIES A24												
FT - FLAT TOP		•	•	•	•	•		•	•			
FG - FLUSH GRID		•	•	•	•	•		•				
RB - RAISED RIB			•					•				
SERIES E30												
FT - FLAT TOP		•	•	•	•	•		•				
PF - PERFORATED		•	•	•	•	•		•				
OG - OPEN GRID		•		•	•	•		•				
FG - FLUSH GRID		•	•	•	•	•		•				
RR - RAISED RIB			•									
WE - WAVE EMBEDDED			•	•	•	•		•				
TF - TRIAN FRICTION	A35 - grey	•			•							
	A45 - black		•									
	A60 - beige	•			•							
FF - FLAT FRICTION	A35 - grey	•			•							
	A45 - black		•									
	A60 - beige	•			•							
AF - ARROW FRICTION	A35 - grey	•			•							
	A45 - black		•									
SR - SLIDING ROLLERS		•	•	•	•	•		•				
SERIES E31									1			
LT - LATERAL TRANSFER								•				
SERIES E32												
FT - FLAT TOP - 82,5 mm								•				
FT - FLAT TOP - 114,3 mm								•				
FT - FLAT TOP - 152,4 mm								•				
FT - FLAT TOP - 190,5 mm								•				
	I	l	I	l	l l	l		I -	I	I		I

 $^{1}W = White G = Grey N = Natural B = Blue O = Black$

Classification by **Materials and colours**

RUBBER Hardness +	ess +		POM -Acetal			PPE	PPE PK-Polyketo	yketone				
Colours	W	G	В	V	N	В	W	В	N	0	W	В
	•	•	•		•	•		•				
	•	•	•		•	•		•				
		•				•		•		•		
A35 - grey	•											
A45 - black		•										
A60 - beige	•				•							
A35 - grey	•											
A45 - black		•										
A60 - beige	•				•							
_	•	•	•		•	•		•				
			1					1				
		•		•								
	•	•	•		•	•		•				
	•	•	•		•	•						
	•	•	•		•	•						
	•		•		•	•						
					-	•						
			_			_						
A60 - heige	-											
	-					_						
A00 beige												
					-							
	-											
							_					
			•									
		•	•									
		I		I								1
	•				•	•						
	•		•		•	•		•	•			
	•							•				
A0E	•	•						•				
	-											
AOU - Delge												
			•					•				•
	•											
	-	•	_					_	_			
466	•	_	•					•	•			
A6U - beige	•	•	•					•	•			
	A35 - grey A45 - black A60 - beige A35 - grey A45 - black	Hardness + Colours A35 - grey A45 - black A60 - beige A35 - grey A45 - black A60 - beige	Hardness + Colours	Hardness + Colours W G B A35 - grey A45 - black A60 - beige A35 - grey A45 - black A60 - beige A60 - beige	Hardness + Colours W G B V A35 - grey A45 - black A60 - beige A35 - grey A45 - black A60 - beige A60 - beige A60 - beige	Hardness + Colours W G B V N A35 - grey A45 - black A60 - beige A60 - beige A60 - beige	Hardness + Colours W G B V N B A35 - grey A45 - black A60 - beige A35 - grey A45 - black A60 - beige A35 - grey A60 - beige	Hardness + Colours W G B V N B W A35 - grey A45 - black A60 - beige A60 - beige A60 - beige A60 - beige A35 - grey A60 - beige	A35 - grey A45 - black A60 - beige	A35 - grey A45 - black A60 - beige	A35 - grey A45 - black A60 - beige A60 - beige	Hardness + Colours W G B V N B W B N O W A35 - grey A45 - black A60 - beige A36 - beige A60 - beige

¹W = White G = Grey N = Natural B = Blue O = Black V=Green

Standard colours available

Consult colour availability

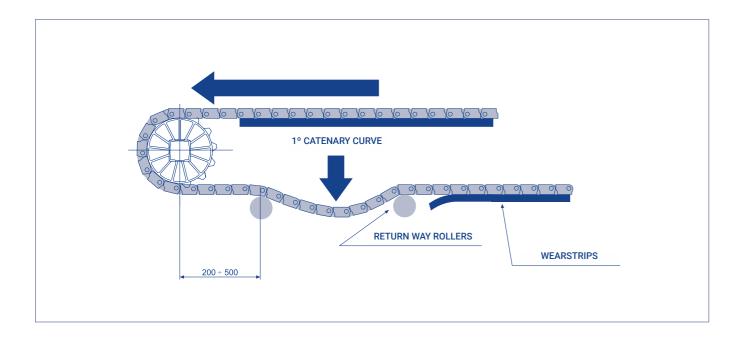
Standard colours available

Consult colour availability

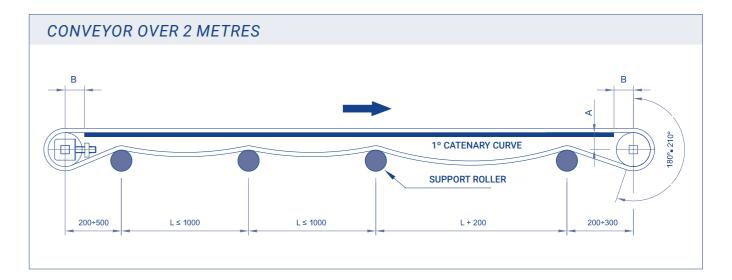
7 / Technical Data

Technical data //

Technical data

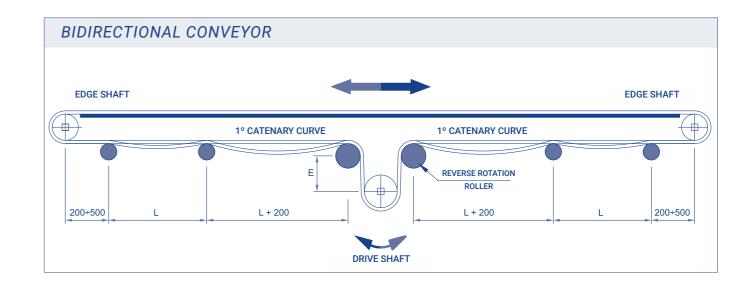

CATENARIES

necessary to apply to the belt a high adherence tension with regard to the transmission drums, in the EUROBELT modular of sprockets, this tension must be the minimum necessary, so apply a tension fixing the belt on the teeth of the sprockets. that the sprockets get correctty fitted to the belt to work properly.


To achieve this, it is necessary to leave the belt hanging down be lesser than that of the first catenary, or on wearstrips.

Unlike other conventional conveyor belt systems, in which it is freely when coming out of the sprockets, once the first support roller has been surpassed, forming a hanging called catenary curve. It will act as a natural take-up, absorbing the changes in conveyor belt system, with direct and positive traction by means length of the belt owing to expansions and contractions. It will

Then the belt can rest on return-way rollers, whose distance will


CONVEYOR UNDER 2 METRES TRANSPORT SURFACE If the conveyor length is under 2 metres, there will **DIRECTION OF ROTATION** be just one catenary that will hang down freely all along the return way. SCREW TAKE-UP In this case it will not be necessary to place any roller in the return way. CATENARY CURVE

placed in the return way in order to create the catenary curves. The distance between the sprocket centre and the first roller should range between 200 and 300 mm for the drive shaft, and between 200 and 500 mm for the idle shaft. The first catenary in the travel direction will be bigger than the rest of catenaries of the conveyor.

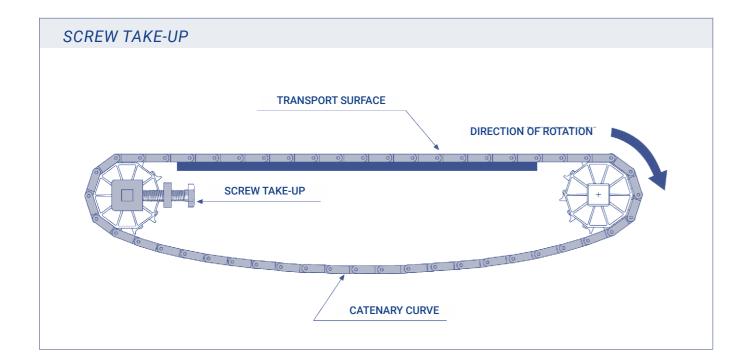
For conveyor lengths over 2 metres, support rollers will be The recommended diameter for the support rollers is 50 mm for the belts with a pitch up to 30 mm, and 100 mm for the belts with a bigger pitch.

> For applications with heavy loads or needing to reduce the conveyor dimensions due to lack of space, the support rollers will be raised for allowing the belt to roll round the sprocket between 180° and 210°.

placed in the centre of the return way at a distance with a bigger pitch. (E) which should be at least the triple of the Belt pitch with regard to the reverse-rotation rollers. These rollers must have a bigger diameter than the support rollers, 100 mm

For bidirectional conveyors, the drive shaft is for the belts with a pitch up to 30 mm, and 150 mm for the belts

The first catenary at every side of the drive shaft will be bigger than the rest of catenaries.

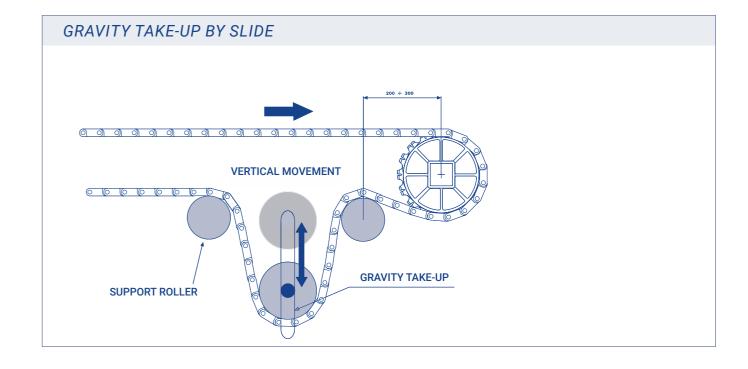

Technical data //

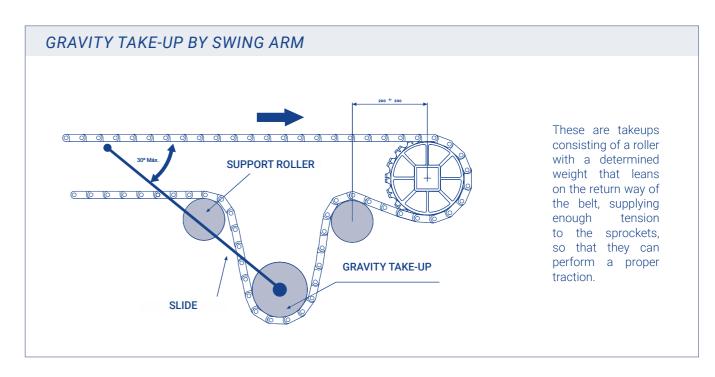
Technical data

TAKEUPS

As shown in the previous chapter, catenary curves act as dynamic gravity takeups that in many cases can provide enough tension of adherence, so that the sprockets do not slide beneath the belt and can pull it properly.

In many cases, these curves do not provide that tension, being necessary the placement of other type of takeups.

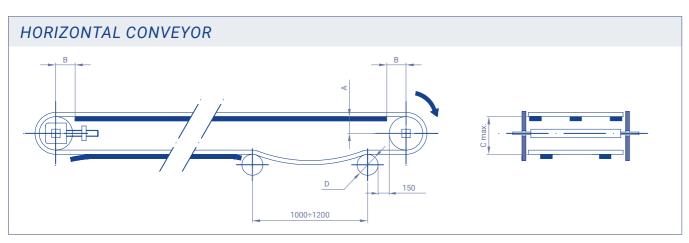

This kind of takeups consists of a a shaft displacement system, Usually these takeups are valid to position the catenary curve, normally the idle shaft, that modifies the real belt length and adapt it to the possible changes occurred because of expasionscontractions, losses of tension, etc.


To carry out this displacement, the bearing journals are put on some slots in the structure of the conveyor, making the fastening by means of regulating screws.

When acting on them, the desired displacement is carried out.

and not as a system to control the changes in the belt length. This type of take-up is suitable to make easy the assembly and dismantling of the belt, as well as to control and regulate the sag of the catenaries.

These screw takeups usually will be accompanied usually by other type of complementary take-up, depending on the characteristics of the application.


Series C12 / F12	? / E20 / A24 / E30	Series E40 / E41 / E50	/ B50 / D50 /E80 / E93	Serie	s E925	
Diameter (mm)	Weight (kg/m of belt width)	Diameter (mm)	Weight (kg/m of belt width)	Diameter (mm)	Weight (kg/m of belt width)	
Ø 100	20 kg	Ø 150	40 kg	Ø 100	40 kg	

Technical data

CONSTRUCTION DATA

Nº Teeth (Z)

centre of the shaft.

[B] Distance between the vertical of the shaft and the beginning [D] Minimum diameter of the return support rollers.

of the sliding s	urface.				
N° Teeth (Z)	Ø Pitch	Α	В	С	D
SERIES C12					
11	42,59	16	22	41	50
16	61,51	26	30	61	50
20	76,7	34	35	77	50
26	99,55	45	40	99	50
31	118,61	55	45	119	50
40	152,94	72	52	153	50
SERIES F12					
13	50,98	22	30	51	50
20	77,99	35	40	77	50
38	147,74	70	52	147	50
SERIES E20					
8	52,2	20	28	65	50
16	102,5	46	50	110	50
24	153,2	72	65	155	50
SERIES A24					
7	55,31	22	25	55	75
13	100,25	46	40	100	75
20	153,41	72	50	155	75
25	191,48	91	60	195	75
SERIES E30 -					
6	60	25	30	65	75
9	87,70	37	40	92	75
11	106,50	48	50	110	75
14	134,82	62	53	135	75
16	153,50	73	65	155	75
18	172,76	81	70	175	75
20	191,50	91	75	195	75
SERIES E40 -		40	1 E	10E	100
8	104,5	43	45 ==	105	100
10 13	129,4 167.1	56 75	55 70	130 165	100 100
13D	167,1 167,1	75 75	70 70	165	100
16	205	75 94	80	205	100
10	203	94	00	203	100

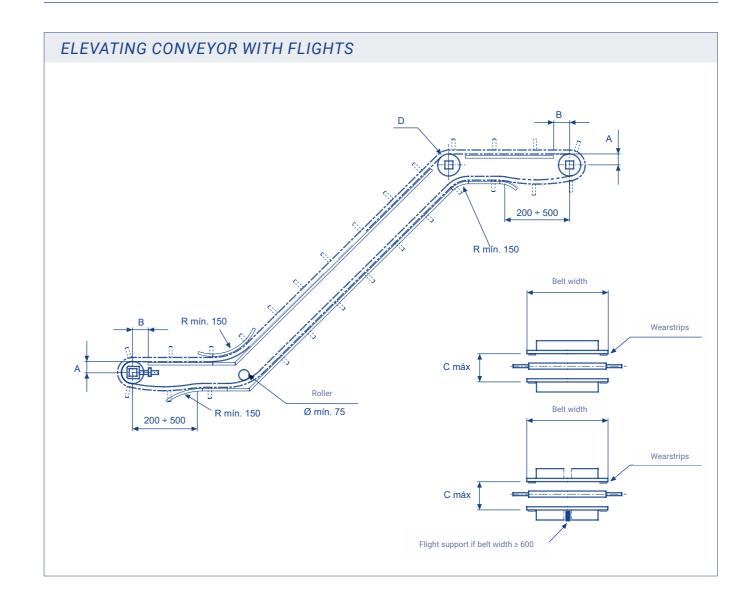
255,7

120

90

255

100


[A] Distance between the sliding surface of the belt and the support of the return way.

Ø Pitch

The table below shows the recommended values of the dimensions A,B,CandDtobetakenintoaccountfortheconstructionofconveyors. These dimensions depend on the belt series and the size of the sprockets.

SERIES E50					
6	100	42	55	105	100
8	135,65	58	60	135	100
10	161,80	72	76	165	100
16	256,29	120	80	206	100
SERIES B50					
6	100	42	55	105	100
8	130,65	58	60	135	100
10	161,80	72	76	165	100
12	193,18	89	78	200	100
16	256,29	120	80	260	100
SERIES D50					
10	161,80	72	76	165	100
12	193,18	89	78	200	100
16	256,29	120	80	260	100
SERIES E80					
8	130,65	58	60	135	100
10	161,80	72	76	165	100
12	193,18	89	78	200	100
16	256,29	120	80	260	100
SERIES E925	5				
12	98,56	42	47	96	70
16	128,15	58	54	127	70
20	159,81	73	59	159	70
SERIES E930)				
11	106,48	44	50	115	100
16	153,77	69	65	160	100
20	191,77	87	75	200	100
SERIES E930)				
8	130,60	58	60	135	100
10	161,80	72	76	165	100
	193,18	89	78	200	100

CONSTRUCTION DATA

ELEVATING CONVEYORS

They are used for product lifting.

The belt must be fitted with Friction Top modules, flights and sometimes side flaps for product containment.

These require special design guidelines, as shown in the diagram above. As with horizontal conveyors, traction on the back shaft should be avoided (if in doubt, please consult our technical department).

When using very high or curved flights, it must be ensured that their spacing does not cause the product to be crushed at the inflection point [R].

Also, small diameter drive sprockets, depending on the series, can cause the side guards to open and the product to overflow.

[D] If sprockets are used on the inflection

shaft, do not retain the central one.

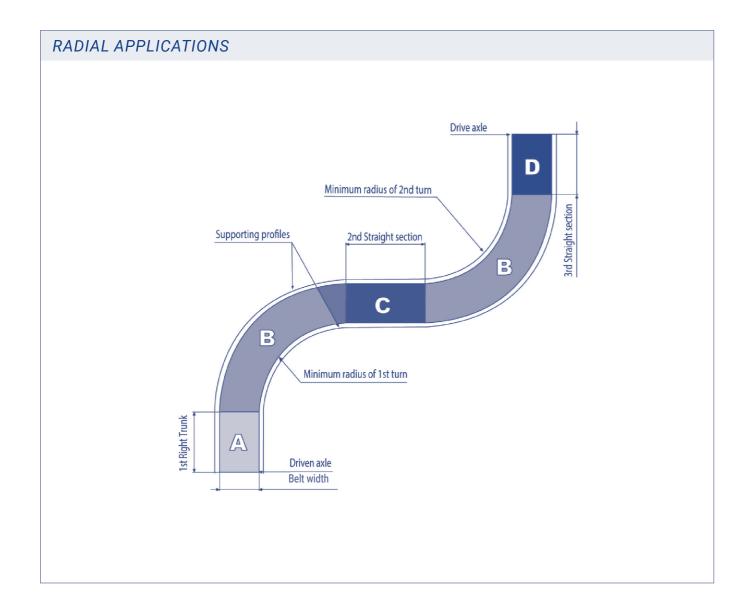
[R] This radius should be as large as the application allows in order to reduce the pressure in the rotating area and reduce the frictional stress (min. 150 mm).

See table for recommended minimum values depending on the Series, as well as for lateral belts with side guards.

Technical data

CONSTRUCTION DATA

system consisting of a curve of 360°, two opposite curves in "S". or circuits without return, etc.. the next conditions must be taken into account:


requirements a smaller length is needed, sprockets.

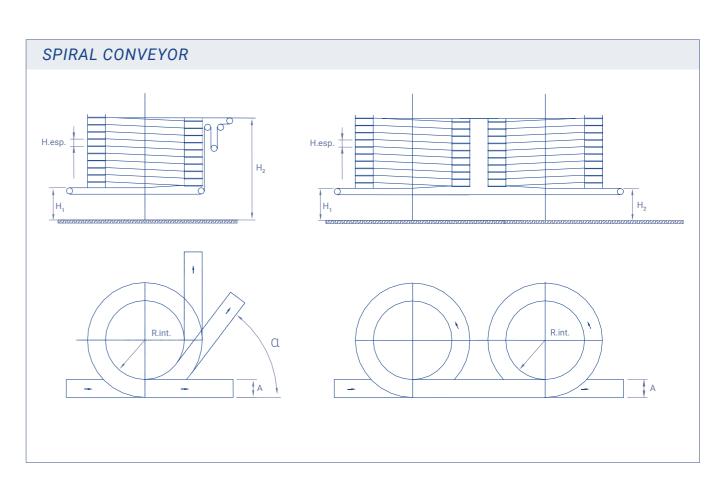
width, measured from the inside.

When two consecutive turns are made in opposite directions, the straight The minimum length of first straight section between both of them must be section has to be 1.5 times the belt 2 times the belt width in order to avoid width. When owing to manufacturing wears in lateral fastenings, as well as the curve sections. high tensions in the belt. If two turns are it could be equal to the belt width, but an made in the same direction, a minimum idle roller should be placed instead of the straight distance between them will not be required.

Before designing a radial conveying. The turn radius for all curves made in. The minimum length of the last straight Series 93 must be 2.2 times the belt section, near the drive shaft, should be at least 1.5 times the belt width, in order to avoid unnecessary wear in sprockets and problems of alignment.

> The total belt length will always be calculated from the outside perimeter of

CONSTRUCTION DATA


SERIES E930 can also be used for Some of its main applications are: applications in spiral conveying systems. Its design of flat and rounded edges reduces considerably frictions between the inner curved radius and the drum, getting a smooth power transference from the central drum to the belt, having as a result a saving in energy costs.

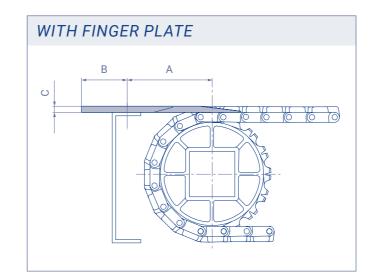
Thanks to its design and its technical characteristics, EUROBELT SERIES E930 can be used to make any kind of configuration, giving the appropriate solution to many of your conveying problems.

- Repose and fermentation belts for
- Elevating and descending conveyors with minimum inclination.
- Cooling and/or freezing belts, as due to the 47% open area you can obtain a great energy transference.
- Special vertical accumulation tables, with a big capacity of storage in a reduced space, thanks to the spiral configuration and to the materials used by EUROBELT.

In the pictures below, we can see different

possible configurations: one only bidirectional spiral (elevating, descending or bidirectional, picture 1). and two spirals (one of them elevating and the other one descending, or bidirectionals, picture 2):

- A Like in the radial applications, the minimum length of the infeed section as well as that of the outfeed one, must be 1.5 times the belt width.
- B On Request minimum turning radius depending on the series selected.

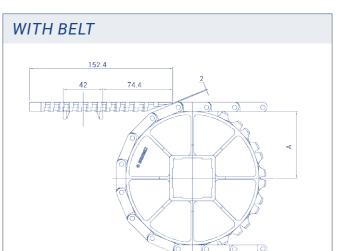

Technical data //

Technical data

TURNING RADIUS

	Ser	ies E925	Seri	ies E930
Belt nominal width (mm)	Factor	Minimum radius (mm)	Factor	Minimum radius (mm)
100	1,27	127	1,35	135
120	1,33	160	-	-
140	1,43	200	-	-
150	-	-	1,47	220
160	1,50	240	-	-
180	1,53	275	-	-
200	1,60	320	1,70	340
220	1,62	356	-	-
240	1,63	390	-	-
250	-	-	1,76	440
260	1,64	427	-	-
280	1,66	466	-	-
300	1,68	505	1,83	550
320	1,69	539	-	-
340	1,69	575	-	-
350	-	-	1,90	665
360	1,70	612	-	-
380	1,71	650	-	-
400	1,73	690	1,95	780
420	1,74	731	-	-
440	1,76	774	-	-
450	-	-	1,97	885
460	1,78	818	-	-
480	1,80	863	-	-
500	1,82	910	1,96	980
520	1,83	949	-	-
540	1,83	988	-	-
550	-	-	2,02	1110
560	1,83	1027	-	-
580	1,84	1067	-	-
600	1,84	1106	2,10	1260
640	1,84	1180	-	-
700	1,86	1304	2,12	1484
720	1,88	1350	-	-
800	1,88	1500	2,18	1744
1000	1,92	1918	2,20	2200
1200	-	-	2,23	2680

TRANSFERENCES



SÉRIE	Α	В	С
E20	75	40	5,5
A24 - E30 - E41	90	50	5,5

The EUROBELT finger plates are used with the Raised Rib type of Series E20, Series A24, Series E30 and Series E41. The transference can be done in the same direction or at 90 degrees, and it is carried out by the own push of the containers among themselves.

The transference is performed in a tangential way, both in the belt that delivers the containers and in the belt that receives them, avoiding the stumbling of the product with the edges of transference plates, also called dead plates, as well as the possibility of falls by overturning.

It is the ideal transference system for big accumulation tables, palletisers or depalletisers, pasteurisers and intersections of transport lines.

Using the Series E31 Lateral-Transfer Flat Top, dynamic and smooth lateral transferences can be carried out with no need of finger plates.

With one of its edges bevelled we manage to bring nearer the belts taking part in the transference, whereas the lower guides keep the belt aligned.

It has been designed for those applications in which we want to avoid the retention of containers in the transference area as well as to achieve more efficiency in their movement.

WITH ROLLERS

When the containers to be conveyed have a considerable dimension and a good stability, the transference area uses to be covered with free or motorised rollers.

This system is suitable both for transferences in the same direction and for those performed at 90 degrees.

It can be carried out with any of our belts.

WITH DEAD PLATE

In applications in which the containers have little stability, the transference area can be covered with a small dead plate made of a material of a low coefficient of friction.

It is placed in transferences to be made in the same direction, and it is recommended to be combined with belts of having a small pitch like Series C12, Series E20, Series A24 or Series E30, and turn diameters as small as possible in order to reduce the length of the dead plate.

Technical data

EFFECTS CAUSED BY TEMPERATURE

DIMENSIONAL VARIATIONS IN THE BELT

The plastic materials undergo functioning. dimensional variations, expansions or contractions, when they are exposed to temperaturechanges with regard to a room temperature of 21° C.

These dimensional variations must be sides. taken into consideration when designing and building the conveyor for its proper

Therefore the conveyor will have to be designed so that it allows to absorb the longitudinal variations in the return way and the width variations in the frame

In order to calculate the expansions or

contractions both of the belt and the wearstrips, the formulae below will be

VARIATION IN THE BELT LENGTH

$\Delta_{l} = L.Initial \times (T.Final - T.Initial) \times \alpha$

 Δ_{l} (mm): Dimensional variation in the belt length.

- A positive value shows an expansion.

- A negative value shows a contraction.

L.initial (mtr.): Belt length at the initial temperature.

T.Final (°C): Final temperature of the application.

T.Initial (°C): Initial temperature of the application.

a (mm/mtr/°C): Thermic expansion coefficient.

$\Delta_w = A.Initial \times (T.Final - T.Initial) \times \alpha$

 Δ_{W} (mm): Dimensional variation in the belt length.

- A positive value shows an expansion.

- A negative value shows a contraction.

A.Initial (mtr.): Belt length at the initial temperature.

T.Final (°C): Final temperature of the application.

T.Initial (°C): Initial temperature of the application. $\alpha (mm/mtr/^{\circ}C)$: Thermic expansion coefficient

THERMIC EXPANSION COEFFICIENTS

Belts	(mm/mtr/°C)	(inch/foot/°F)
Polypropylene (below 38°C)	0,12	0,0008
Polypropylene (above 38°C)	0,15	0,0010
Polyethylene	0,17	0,0011
ACÉTAL	0,09	0,0006

WEARSTRIPS	(mm/mtr/°C)	(inch/foot/°F)
HDPE (Polyethylene alta densidad)	0,17	0,0011

Example:

Product transport application under the conditions below:

- Belt material: polypropylene (.... according to the table).

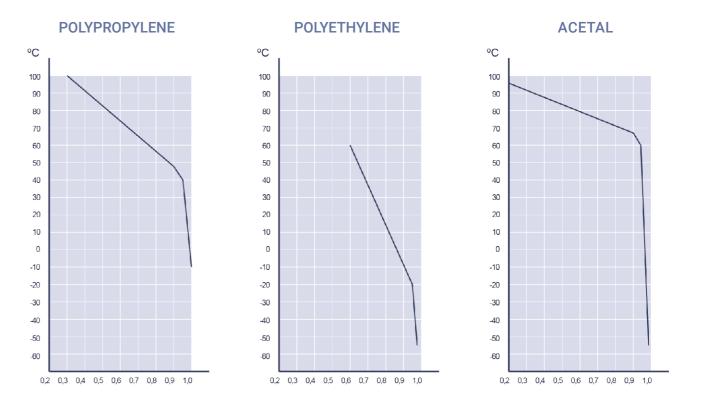
- Length: 20 m. (Linitial).

- Width: 1 m. at 21° C (A.Initial and T.Initial).

- Final working temperature: 80° C (T.Final).

Applying the above formulae we will obtain:

: 20 x (80-21) x 0,15 = 177 mm. Δ_{l} Length : 1 x (80-21) x 0,15 = 8,85 mm. Δ_w Width


Therefore, whenever we carry out the conveyor design it will have to be taken into consideration that 177 mm must be absorbed by their catenaries in the return way, otherwise by its take up, and 8.85 mm by the conveyor sides for its proper functioning.

VARIATIONS IN THE MECHANICAL PROPERTIES OF THE BELT


they are subject to temperature variations.

These variations determine a Temperature Factor (CT) that has an influence on the belt resistance and that must

All plastic materials undergo changes in their properties when be taken into consideration when making the feasibility calculations of the application and when choosing the most appropriate belt and material.

It can be observed in the above graphics that:

Likewise it will have to be taken into consideration that the lower the temperature is, the more brittle the belt surface is, which is important in applications with impacts.

EFFECTS CAUSED BY FRICTION

Technical data

FRICTION BETWEEN THE BELT AND THE SUPPORT SURFACES

friction between the support surfaces of the belt and the belt itself wear, a lower motor power, and a longer useful life of the belt. due to the belt weight and that of the product conveyed.

This friction determines a Friction Factor (CF) that must be taken into consideration for calculating the feasibility of the application as well as for the belt choice.

The belt movement entails a negative strength caused by the Small values of this factor will imply softer belt movements, less

The most common values for this Friction Factor are:

SUPPORT SURFACE	POLYPRO	POLYPROPYLENE		HYLENE	ACETAL		POLYKETONE	
MATERIALS	Humid surface	Dry surface	Humid surface	Dry surface	Humid surface	Dry surface	Humid surface	Dry surface
U.H.M.W.	0,11	0,13	0,24	0,32	0,10	0,10	0,19	0,15
H.D.P.E.	0,09	0,11	NR	NR	0,09	0,08	-	-
Nylon impregnated with molybdenum or silicone	0,24	0,25	0,14	0,13	0,13	0,15	-	-
Stainless steel or carbon steel cold rolled	0,26	0,26	0,14	0,15	0,18	0,19	0,30	0,20

FRICTION BETWEEN THE BELT AND THE TRANSPORTED PRODUCT

of the product which appears when the belt is running and the surface, a lower motor power, and a longer useful life of the belt. product stops on its surface. A characteristic example is that of the accumulation tables.

The Factor of Friction by Accumulation (CAC) will have to be taken into account for calculating the feasibility of our application as well as for the belt choice.

In some applications there can be other type of negative forces

As in the previous case, small figures of this Factor will imply softer caused by the friction between the belt contact surface and that belt movements, less belt wear and fewer damages on the product

The most common values of this Factor are:

MATERIAL OF TRANSPORTED	POLYPRO	OPYLENE	POLYET	HYLENE	ACETAL	
PRODUCT	Humid surface	Dry surface	Humid surface	Dry surface	Humid surface	Dry surface
GLASS	0,18	0,19	0,08	0,09	0,13	0,14
STAINLESS STEEL	0,26	0,32	0,10	0,13	0,13	0,13
PLASTIC	0,11	0,17	0,08	0,08	0,13	0,16
CARDBOARD	-	0,21	-	0,15	-	0,18
ALUMINIUM	0,40	0,40	0,20	0,24	0,33	0,27

MAINTENANCE

ASSEMBLY

Eurobelt belts are made of modules which are joined by means caps. of joint rods and which constitute their transport area.

Their modular configuration allows us to manufacture a madeto-measure belt for you.

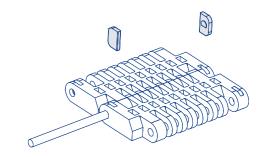
We will introduce the rod in the hole existing across every module to join the different lines of modules that make up the conveyor.

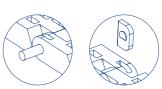
The fastening of the rods is carried out by means of extractable

These caps will be inserted into the lodgings existing for that purpose in the end modules.

Finally, in order to make easier the positioning of the belt on the conveyor, both ends of the belt will be joined at the top of the

DISMANTLING CAP

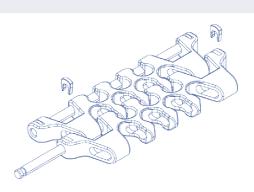

[A] Lean the belt on a smooth area, leaving a free space underneath the line we are going to replace to allow the cap to get out.


[B] Now we will pull out the caps placed at both ends, always from the top to the bottom.

[C] We will push the rods until releasing the damaged module.

[D] We will replace the damaged module and will introduce the rods.

[E] Insert the caps, always from the top to the bottom.


DISMANTLING CLIP

[A] Leave a free space underneath the ends of the line to pull out the clips, always from the bottom to the top.

[B] Push the rods until releasing the damaged module.

[C] Replace the damaged module and introduce the rods.

[D] Insert the clips, always from the top to the bottom.

The above friction values are theoretical and can be altered according to other factors like high speed, heavy load, and working conditions, dirty or abrasive environments, etc.

Technical data

Technical data

MAINTENANCE

One of the most important characteristics of the plastic modular belt is the low maintenance cost. With a minimal expenditure in preventive maintenance, the belt can work uninterruptedly until the wear of the material itself, due to the friction with the fixed portions of the conveyor, advises its replacement in order to avoid unexpected stops.

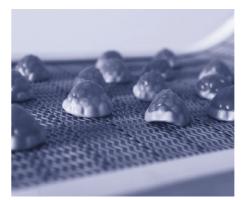
In case of accident (tear or breakage) the repair will just take some minutes, the necessary time for replacing the damaged modules with no need of any specific tool..

The maintenance works must be done by qualified personnel and always according to the valid legislation regarding Job Security.

Before installing and putting into operation the machine, all the checking and general maintenance instructions given by the manufacturer of the conveyor must be read carefully.

It is important to carry out a constant maintenance and/or cleaning of the machine, particularly in those areas in direct contact with the product.

First of all the machine will be switched off to avoid the risk of electric shock. Make sure the general switch is in the off position and the emergency stop of the machine is pressed.


For cleaning our plastic modular belts use water and gel, and rinse with water and disinfectant.

Before applying any gel or disinfectant to the belt, the label of the container should be read carefully to check the composition.

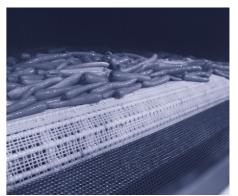
In order not to damage the belt, it is essential the composition of the gel and that of the disinfectant to be very low in chlorine. Any cutting element will never be used for the cleaning of the belt as it can cause its deterioration.

Series E30 Wave EmbeddedCandy sector

Series E930 Sliding Rollers

Series E930 Flush Grid

Series E80 Flat Top Wine sector


Series E50 Open Grid
Fish sector

Series E50 Flush Grid Snack sector

Series E30 Raised Rib Pastry sector

Series E50 Flush Grid Vegetable sector

8 / Materials

Materials

STANDARD MATERIALS

POLYPROPYLENE (PP)

It is the basic material in order to manufacture conveyor belts for most of processes, both in food industry and in industry generally speaking.

With a good mechanic resistance, and a temperature range from +5 °C to +104 °C, it has a specific gravity of approximately 0.9, and it floats in the water.

Given its excellent chemical resistance to most of the acids and concentrated bases, salts, and detergents, it is essential for corrosive work environments.

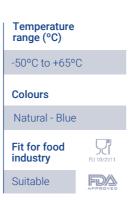
It is very resistant to penetration of micro organisms

Though it has a resistance to impact close to 3.5 kJ/m2, it becomes slightly fragile at temperatures below 9 °C. That is why it is not recommended for processes in which there will be strong impacts on the helt

Temperature range (°C) +5°C to +104°C Colours White - Grey - Blue Fit for food industry

Suitable

FDA


POLYETHYLENE (PE)

Thanks to a temperature range from -50 °C to +65 °C, it is the most suitable material for belts to be used in freezing processes.

With a specific gravity of 0.95 approximately, it floats in the water. It stands out for its excellent resistance to impact and fatigue, and for its flexibility.

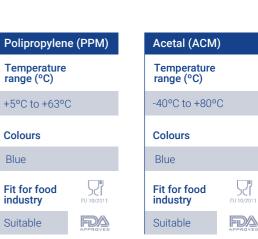
Good chemical resistance to many acids and concentrated bases, salts, and detergents.

Its low coefficient of friction provides excellent sliding properties, with a minimum of adherence and absorption.

FOR SPECIAL APPLICATIONS

RESISTANT TO UV-RAYS

We have a black polyethylene resistant to UV rays for conveyor belts to be used in applications that will be out in the open, at low temperatures, and exposed to solar radiation.

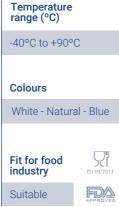

DETECTABLE BY METALS AND X-RAYS

It is used in belts for process lines where you want to avoid that it can be mixed with the product, pieces or splinters of it.

Material easily detectable by all types of metal detectors and can also be detected by an X-ray detector.

It is recommendable to test the material in your production environment to determine the detection sensitivity of your equipment.

Check availability and deadlines according to models and series of belts.


ACETAL (POM)

With a specific gravity of 1.5 approximately, the technical polyacetals are thermoplastics of low friction coefficient with the greatest resistance to scratching and breakage. That is why it is the material used in accumulation tables for all kind of containers, as it avoids any damage on the product surface, as well as crushing.

Its great mechanical resistance enables it to transport heavy loads.

With a wide temperature range from -40 °C to +90 °C, it is used for manufacturing belts that will convey heavy loads and in applications involving the use of sharp tools.

It has a good chemical resistance to solvents, greases, and a large list of chemicals.

METAL DETECTABLE (PED)

It is used in the belts of the process lines where you want to avoid the mix pieces or shrapnel of it with the product.

Material easily detectable by all types of metal detectors (MD)

Suitable for direct contact with food.

Polyethylene	(PED)
Temperature range (°C)	
-40°C to +50°	С
Colours	
Blue	
Fit for food industry	EU 10/20
Suitable	FD/

Materials

FOR SPECIAL APPLICATIONS

ELECTRICALLY CONDUCTIVE

These materials have very low coefficient of resistivity, both volumetric and superficial, which makes it ideal for those applications in which it is necessary to dispel the electrostatic charges, created on the belt, through the conveyor's structure.

Special for conveyance applications at low temperatures in environments classified as ATEX.

Unsuitable for direct contact with food.

Consult availability and delivery times according to models and belt series.

WEAR-RETARDANT MATERIAL

Special material to prolong the average life of the belts, as their wear gets reduced when working in abrasive environments.

It is used in all those applications in which the belt is exposed to scratches due to the abrasion caused by the product itself or by other elements like sand, abrasive dust, etc.. conveyed together with it.

Unsuitable for direct contact with food.

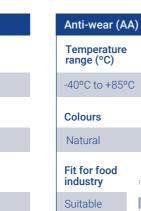
Polipropylene (PPE) Temperature range (°C) +5°C to +95°C Colours Black Fit for food industry Unsuitable

Anti-wear (AAN)

Temperature range (°C)

Colours

Yellow


industry

Fit for food

Unsuitable

-30°C to +80°C

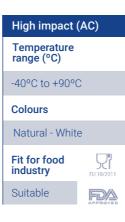
HIGH IMPACT MATERIAL AT LOW TEMPERATURE

Particularly suitable for applications where flights break even at low temperatures.

Very resilient with high impact resistance

Continuous working temperature to -40°C y 110°C

Suitable for direct contact with food


High impact (TPC) Temperature range (°C) -40°C to +110°C Colours Cream Fit for food industry Suitable

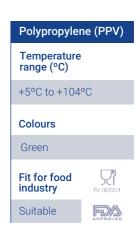
HIGH IMPACT MATERIAL AND SCRATCHES

It is an acetal resistant to high Impacts and scratches. Thanks to its mechanical properties it can be used in applications where is necessary to cut meat or fish with sharp tools on the belt.

It is also resistant to products that can scratch the surface such as bones or thorns.

It is also a suitable material to resist the impact of products bulky and heavy. The belt does not suffer breakage. Suitable for use with pork ham, cow forequarters and whole tuna during its manual handling.

FOR SPECIAL APPLICATIONS


SPECIAL POLYPROPYLENE FOR PASTEURIZERS

This material protects the belt from temperature changes with the presence of bromine and chlorine.

Improves resistance up to 15% at near temperatures of 104°C.

It is not recommended in applications with high impact below 9°C

Food certification, both European Directive and FDA (Food and Drug Administration)

FLAME RESISTANT

With some good properties mechanical and resistance chemistry it is retardant to the flame of the fire having a flammability index of V-0 (UL94 test).

To the be lubricated it has one index of absorption and a coefficient of friction very low.

This material is not approved for direct contac with food and its range of working temperature is from +5 to 104°C

Polypropylene (PPL)
Temperature range (°C)
+5°C to +104°C
Colours
White
Fit for food industry
Unsuitable

Thickness Value (mm)

V-0

V-2

Flammability rating

(UL94)

1,5

0.75

Unsuitable

POLYKETONE

This material has better resistance to abrasion and impact than acetal.

Excellent chemical resistance to chemical agents such as acids, hydrocarbons, etc...

It also has good wear and friction properties, with a low noise level.

Material with high resistance to hydrolysis, maintaining dimensional stability in a humid and hot environment

Suitable for direct contact with food

Polyketone	(PK)						
Temperature range (°C)							
-30°C to +80°	C						
Colours							
Blue - White -	Cream						
Fit for food industry	EU 10/2011						
Suitable	FDA APPROVED						

Materials

FOR HEAT RESISTANT APPLICATIONS

NYLON

Belts made from this material have good geometric stability against heat, great hardness and high rigidity.

They are resistant to wear in abrasive and dry environments.

With a high hygroscopic value, it is not recommended for use in humid environments, since the dimensions of the belt vary considerably.

Nylon

Heat stable with temperature values up to 120°C in continuous work and peaks up to 135°C. For extreme values, it is necessary to take into account the decrease in its mechanical properties.

Its flammability index is V-2 (UL94 test in a thickness of 1.6 mm.)

Suitable for direct contact with food, except with foods that contain alcohol.

Nylon high temperatures resistant (HT)

Heat stable with temperature values up to 150°C in continuous work and points of up to 180°C. For extreme values, the decrease in its mechanical properties must be taken into account.

Its flammability index is HB (UL94 test in a thickness of 1.6 mm.)

Suitable for direct contact with food, except with foods that contain alcohol.

Nylon high temperatures resistant (HT plus)

Heat stable with temperature values up to 170°C in continuous work. For extreme values, the decrease in its mechanical properties must be taken into account.

Its flammability index is V-0 (UL94 test in a thickness of 1.6 mm.)

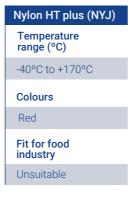
It also contains special additives to reduce adherence.

It is not suitable for direct contact with food.

PPS

It is one of the polymers with the greatest hardness and rigidity, with heat stability at temperatures up to 200°C in continuous work and peaks up to 240°C.

High resistance to fatigue, mechanical and chemical.


Flame retardant to fire, flammability rating of V-0

Low water absorption, practically nil (0.02%)

It is suitable for direct contact with food.

Temperature range (°C) -40°C to +200°C Colours Brown Fit for food industry Suitable

FOR FRICTION TOP BELTS

THERMOPLASTIC ELASTOMERS (TPE)

It is a thermoplastic vulcanized, flexible and with a very good adherence. It is used for obtaining the maximum grip of the product to the transport surface in order to prevent it from sliding in incline conveyors.

Good resistance to fatigue, oil, and chemicals in general.

The temperature range runs from -40 to 100 °C.

When designing an application with belts manufactured in this material, we should take into account:

- The environmental conditions regarding the work area (temperature, humidity, possible spilling of liquids, etc.).
- The geometrical peculiarities of the application (inclination degrees, speed, possible vibrations, etc.).
- The characteristics of the product (weight, dimensions, material of its packing, etc.).
- The belt return way will be designed avoiding always the friction of the rubber on the support surfaces, on the inverse turn rollers, etc.

We have three hardness grades:

Shore A45
Temperature range (°C)
-40°C to +100°C
Colours
Black
Fit for food industry
Unsuitable

Shore A60	
Temperature range (°C)	
-40°C to +100°C	
Colours	
Beige	
Fit for food industry	EU 10/2011
Suitable	APPROVED.

Chemical resistance

	Pl	P	P	E	AC		
CHEMICAL NAME	20 °C	60 °C	20 °C	60 °C	20 °C	60 °C	
Acetic acid	V	V	V	Q	-	-	
Acetic acid (5%)	V	V	V	V	V	-	
Acetone	V	V	V	V	Q	Q	
Alcohol (all types)	V	V	V	V	-	-	
Aluminium compounds	V	V	V	V	-	-	
Alums (all types)	V	V	V	V	-	-	
Ammonia	V	V	V	V	-	-	
Ammonium compounds	V	V	V	V	-	-	
Amyl acetate	Q	NV	Q	NV	-	-	
Amyl chloride	NV	NV	Q	NV	-	-	
Aniline	V	V	V	NV	-	Q	
Aqua regia	NV	NV	Q	NV	-	-	
Arsenic acid	V	V	V	V	-	-	
Barium compounds	V	V	V	V	-	-	
Barium soap fat	V	Q	-	-	-	-	
Beer	V	V	V	V	-	-	
Benzene	Q	NV	Q	NV	V	Q	
Benzene sulphonic acid (10%)	V	V	V	V	-	-	
Benzoic acid	V	V	V	V	-	-	
Borax	V	V	V	V	-	-	
Boric acid	V	V	V	V	-	-	
Brake fluid	V	V	-	-	V	V	
Brine (10%)	V	V	V	V	V	V	
Bromic acid	NV	NV	NV	NV	-	-	
Bromine, liquid or vapour	NV	NV	NV	NV	-	-	
Bromine water	NV	NV	-	-	-	-	
Butyl acetate	NV	NV	Q	NV	-	-	
Butyl acid	NV	NV	V	Q	-	-	
Butyric acid	V	-	V	Q	-	-	
Calcium compounds	V	V	V	V	-	-	
Calcium soap fat	V	Q	-	-	-	-	
Calgonite (0,3%)	V	V	-	-	V	V	
Carbon dioxide	V	V	V	V	-	-	
Carbon disulphide	Q	NV	Q	NV	-	-	
Carbon tetracloride	NV	NV	NV	NV	V	Q	

This chemical resistance guide is merely informative and it is based on specifications given by the suppliers of the technical plastics employed in our manufacturing process.

Materials

[PP] Polypropylene / [PE] Polyethylene / [AC] Polyacetal / [PA] Nylon / [PBT] Polybutylene terephthalate [V] Valid / [NV] Not Valid / [Q] Questionable / [-] No Information

Chemical **resistance**

	PI	o	PE		AC		
CHEMICAL NAME	20 °C	60 °C	20 °C	60 °C	20 °C	60 °C	
Cellosolve TM	V	V	-	-	-	-	
Chloracetic acid	V	V	-	-	-	-	
Chlorine-gas	NV	NV	Q	NV	NV	NV	
Chlorine water (0,4% CI)	V	Q	-	-	NV	NV	
Chlorobenzene	NV	NV	Q	NV	-	-	
Chloroform	NV	NV	NV	NV	-	-	
Chlorosulphonic acid	NV	NV	NV	NV	-	-	
Chlorox	NV	V	Q	-	-	NV	
Chromic acid (50%)	V	V	V	Q	-	-	
Citric acid	V	V	V	V	-	-	
Citric acid (10%)	V	V	V	V	V	-	
Citrics juice	V	V	V	V	-	-	
Clorine liquid	NV	NV	NV	NV	NV	NV	
Coconut oil	V	V	V	V	-	-	
Copper compounds	V	V	V	V	-	-	
Corn oil	V	V	V	V	-	-	
Cottonseed oil	V	V	V	V	-	-	
Cresol	V	V	V	Q	-	-	
Cyclohexane	V	Q	NV	NV	-	-	
Cyclohexanone	V	Q	NV	NV	-	-	
Detergents	V	V	V	V	V	V	
Dextrine	V	V	V	V	-	-	
Di-iso-octyl phthalate	V	V	-	-	-	-	
Dibutyl phthalate	V	Q	-	-	-	-	
Diethanolamine	V	V	-	NV	-	-	
Diethyl ether	NV	NV	NV	NV	Q	Q	
Diglycolic acid (30%)	V	V	V	V	-	-	
Dimethyl phthalate	V	V	-	-	-	-	
Dimethylamine	V	-	-	-	÷	-	
Dioctyl phthalate	V	Q	-	-	-	-	
Ethyl acetate	V	V	Q	Q	Q	NV	
Ethyl ether	Q	Q	-	-	-	-	
Ethylamine	V	V	-	-	-	-	
Ethylene chloride	NV	NV	-	-	-	-	
Ethylene glicol (50%)	V	V	V	V	V	Q	

This chemical resistance guide is merely informative and it is based on specifications given by the suppliers of the technical plastics employed in our manufacturing process.

Materials:

[PP] Polypropylene / [PE] Polyethylene / [AC] Polyacetal / [PA] Nylon / [PBT] Polybutylene terephthalate [V] Valid / [NV] Not Valid / [Q] Questionable / [-] No Information

Materials // // Materials

Chemical resistance

	F	PP P	P	E	A	С
CHEMICAL NAME	20 °C	60 °C	20 °C	60 °C	20 °C	60 °C
Ferric/ferrous compounds	V	V	V	V	-	-
Formaldehyde (37%)	V	V	V	Q	-	-
Formic acid (85%)	V	Q	V	V	-	-
Freon	-	-	V	V	Q	Q
Fuel oil	V	Q	V	NV	Q	Q
Furfural	NV	NV	Q	NV	-	-
Glucose	V	V	V	V	-	-
Glycerol	V	V	-	-	-	-
Grease	V	V	V	Q	-	-
Heptane	NV	NV	Q	NV	V	V
Hexane	V	Q	NV	NV	-	-
Hydriodic acid	NV	NV	-	-	-	-
Hydrobromic acid (50%)	V	V	V	V	-	-
Hydrochloric acid	V	V	V	V	NV	NV
Hydrochloric acid (10%)	V	V	V	V	NV	NV
Hydrofluoric acid (35%)	V	V	V	V	NV	NV
Hydrogen peroxide (3%)	V	V	V	V	V	V
Hydrogen peroxide (90%)	Q	Q	V	Q	-	-
Hydrogen sulphide	V	V	V	V	-	-
Igepal (50%)	V	V	-	-	V	Q
lodine-glasses	V	V	Q	Q	-	-
Isooctane	NV	NV	V	-	-	-
Kerosine	Q	NV	Q	Q	V	V
Lactic acid	V	V	V	V	-	-
Lanolin	V	Q	V	V	-	-
Lard	-	-	V	V	-	-
Lauric acid	V	V	V	V	-	-
Lead acetate	V	V	V	V	-	-
Ligroine	Q	NV	-	-	-	-
Lime sulfur	V	-	-	-	-	-
Linseed oil	V	V	V	V	V	V
Lubricating oil	V	Q	-	-	V	V
Magnesium compounds	V	V	V	V	-	-
Malic acid (50%)	V	V	V	V	-	-
Manganese sulphate	V	-	V	V	-	-

This chemical resistance guide is merely informative and it is based on specifications given by the suppliers of the technical plastics employed in our manufacturing process.

Materials

[PP] Polypropylene / [PE] Polyethylene / [AC] Polyacetal / [PA] Nylon / [PBT] Polybutylene terephthalate [V] Valid / [NV] Not Valid / [Q] Questionable / [-] No Information

Chemical **resistance**

	P	P	PI	E	AC		
CHEMICAL NAME	20 °C	60 °C	20 °C	60 °C	20 °C	60 °C	
Margarine	V	V	V	V	-	-	
Mercury	V	V	V	V	-	-	
Mercury compounds	V	V	V	V	-	-	
Methyl cellosolve	V	-	-	-	-	-	
Methyl chloride	NV	NV	-	-	-	-	
Methyl ethyl kesone	V	Q	NV	NV	-	-	
Methyl sulphuric acid	V	V	V	V	-	-	
Methylene chloride	Q	NV	NV	NV	-	-	
Mineral oil	Q	NV	V	NV	V	V	
Mineral alcohols	Q	NV	-	-	-	-	
Molasses	V	V	V	V	-	-	
Motor oil	V	Q	-	-	V	V	
Naphtha	V	Q	Q	NV	-	-	
Nickel compounds	V	V	V	V	-	-	
Nitric acid (30%)	V	Q	V	V	NV	NV	
Nitric acid (50%)	Q	NV	V	Q	NV	NV	
Nitric acid (fuming)	NV	NV	NV	NV	NV	NV	
Nitrobenzene	V	Q	NV	NV	-	-	
Nitrous acids	Q	NV	-	-	-	-	
Nitrous oxide	V	-	-	-	-	-	
Oil for transformers	V	Q	V	Q	-	-	
Oleic acid	V	NV	-	-	V	V	
Olive oil	V	V	V	V	-	-	
Oxalic acid	V	V	V	V	-	-	
Oxygen	NV	NV	-	-	-	-	
Ozone	NV	NV	Q	NV	-	-	
Palmitic acid (70%)	V	V	V	V	-	-	
Perchloric acid (20%)	V	V	V	V	-	-	
Perchloroethylene	NV	NV	NV	NV	-	-	
Petrol	Q	NV	V	NV	V	V	
Phenol (5%)	V	V	V	V	NV	NV	
Phenol	V	V	V	V	NV	NV	
Phosphoric acid (30%)	V	V	V	V	-	-	
Phosphoric acid (85%)	V	V	V	V	-	-	
Photographic solutions	V	V	V	V	-	-	

This chemical resistance guide is merely informative and it is based on specifications given by the suppliers of the technical plastics employed in our manufacturing process.

Materials:

[PP] Polypropylene / [PE] Polyethylene / [AC] Polyacetal / [PA] Nylon / [PBT] Polybutylene terephthalate [V] Valid / [NV] Not Valid / [Q] Questionable / [-] No Information

Materials // // Materials

Chemical resistance

	P	P	P	E	AC		
CHEMICAL NAME	20 °C	60 °C	20 °C	60 °C	20 °C	60 °C	
Phthalic acid (50%)	V	V	V	V	-	-	
Plating solutions	V	V	V	V	-	-	
Potassium compounds	V	V	V	V	-	-	
Potassium iodide 3% iodine	V	V	V	V	-	-	
Potassium hydroxide	V	V	V	V	-	-	
Potassium permanganate	V	Q	V	V	-	-	
Silver cyanide	V	V	-	-	-	-	
Silver nitrate	V	V	V	V	-	-	
Sodium chlorite	V	Q	V	V	-	-	
Sodium compounds	V	V	V	V	-	-	
Sodium hydroxide	V	V	V	V	-	-	
Sodium hydroxide (60%)	V	V	V	V	V	V	
Sodium hypochlorite (5% Cl.)	V	Q	-	-	NV	NV	
Stannic chloride	V	V	V	V	-	-	
Stannous chloride	V	V	V	V	-	-	
Stearic acid	V	Q	V	V	-	-	
Succinic acid	V	V	V	V	-	-	
Sugar	V	V	V	V	-	-	
Sulphamic acid (20%)	V	V	-	-	NV	NV	
Sulphite solutions	V	V	-	-	-	-	
Sulphur	V	V	V	V	-	-	
Sulphur bioxide	V	V	V	V	-	-	
Sulphur chloride	V	-	-	-	-	-	
Sulphuric acid (3%)	V	V	V	V	V	V	
Sulphuric acid (50%)	V	V	V	V	NV	NV	
Sulphuric acid (70%)	V	Q	V	Q	NV	NV	
Sulphuric acid (fumming)	NV	NV	NV	NV	NV	NV	
Sulphurous acid	V	-	V	V	-	-	
Tannic acid (10%)	V	V	V	V	-	-	
Tartaric acid	V	V	V	V	-	-	
Tetrahydrofurane	Q	NV	-	-	-	-	
Toluene	NV	NV	NV	NV	Q	NV	
Tomato juice	V	V	V	V	-	-	
Tributylic phosphate	V	Q	-	-	-	-	
Trichloroacetic acid	V	V	-	-	-	-	

This chemical resistance guide is merely informative and it is based on specifications given by the suppliers of the technical plastics employed in our manufacturing process.

[PP] Polypropylene / [PE] Polyethylene / [AC] Polyacetal / [PA] Nylon / [PBT] Polybutylene terephthalate [V] Valid / [NV] Not Valid / [Q] Questionable / [-] No Information

Chemical resistance

CHEMICAL NAME	Р	P	Р	E	AC		
CHEMICAL NAME	20 °C	60 °C	20 °C	60 °C	20 °C	60 °C	
Trichloroethylene	NV	NV	NV	NV	-	-	
Tricresylic phosphate	V	Q	-	-	-	-	
Trisodium phosphate	V	V	V	V	-	-	
Turbosine	Q	NV	Q	Q	V	V	
Turpentine	Q	NV	Q	NV	-	-	
Urea	V	V	V	V	-	-	
Vinegar	V	V	V	V	-	-	
Wine	V	V	V	V	-	-	
Xylene	NV	NV	NV	NV	-	-	
Zinc compounds	V	V	V	V	-	-	

This chemical resistance guide is merely informative and it is based on specifications given by the suppliers of the technical plastics employed in our manufacturing process.

Materials:

[PP] Polypropylene / [PE] Polyethylene / [AC] Polyacetal / [PA] Nylon / [PBT] Polybutylene terephthalate [V] Valid / [NV] Not Valid / [Q] Questionable / [-] No Information

Applications// //Applications

Industry **applications**

Industry **applications**

AU	TON	MOTIVE	Charge of batteries	All kind of curves	Degreasing	Elevating lines	Elevators of residues	Tyre production lines	Positioning for welding	Bidirectional conveyors	Transport of people	Transport of delicate pieces	Transport of cars	Accumulation tables
	Q50	Flat Top					*		*			*		
	ŏ	Conic												
		Flat Top												
	C12	Flush Grid												
		Nub Top												
	F12	Flush Grid												
		Flat Top												
		Flush Grid												
	E20	Raised Rib												
		Trian Friction												
		Trian Rollers												
		Sliding Rollers												
<u> </u>		Flat Top												
STRAIGHT	A24	Flush Grid												
STR		Raised Rib												
		Flat Top					*	*						
		Perforated Top												
		Flush Grid						*		*				
		Open Grid												
	E30	Raised Rib												
	ù	Trian Friction												
		Flat Friction												
		Arrow Friction												
		Wave Embbeded												
		Sliding Rollers												
	E31	Lateral Transfer												
	E32	Flat Top												

AU	TON	MOTIVE	Charge of batteries	All kind of curves	Degreasing	Elevating lines	Elevators of residues	Tyre production lines	Positioning for welding	Bidirectional conveyors	Transport of people	Transport of delicate pieces	Transport of cars	Accumulation tables
		Flat Top					*		*			*		
		Flush Grid	*		*			*		*			*	*
	E40	Non Slip									*		*	
	ш	Trian Friction												
		Flat Friction												
		Sliding Rollers												
	E41	Raised Rib												
		Flat Top					*		*			*		
		Perforated Top												
		Flush Grid			*									
١.	E50	Open Grid												
STRAIGHT		Open High												
TRAI		Knurled									*		*	
, V		Conic									*		*	
		Trian Friction				*								
		Conic Friction				*								
		Sliding Rollers												
		Flat Top					*							
	B50	Perforated Top												
		Flush Grid			*									
		Flush Grid	*		*					*				
	D50	Roller 0°						*	*	*				*
		Roller 90°						*	*	*				*
	E80	Flat Top												
	Ш	Perforated Flat												
	ΓŪ	Flush Grid		*	*			*	*			*		
	E92	High Deck		*										
ES		Flat Friction		*								*		
CURVES		Flush Grid		*	*			*	*			*		
0	E930	Conic		*										
	й	Conic Friction		*										
		Sliding Rollers		*										

Applications// //Applications

Industry **applications**

Industry **applications**

POULTRY		Accumulation of containers	Boiling	All kind of curves	Metal detectors	Chicken frames elevation	Elevating and descending spirals	Washers of containers	Quartering lines	Packaging lines	Slicing lines	Reject by weight control	Non-slip conveyors	
STRAIGHT	Q50	Flat Top	*				*			*				
		Conic								*		*		*
	C12	Flat Top												
		Flush Grid				*					*		*	
		Nub Top				*					*	*	*	
	F12	Flush Grid		*					*	*		*		
	E20	Flat Top				*					*		*	
		Flush Grid				*					*	*	*	
		Raised Rib												*
		Trian Friction												
		Trian Rollers												
		Sliding Rollers												
	A24	Flat Top				*					*		*	
		Flush Grid				*					*	*	*	
		Raised Rib												
	E30	Flat Top	*			*					*		*	
		Perforated Top												
		Flush Grid		*		*			*		*	*	*	
		Open Grid												
		Raised Rib												
		Trian Friction												*
		Flat Friction												*
		Arrow Friction												
		Wave Embbeded												
		Sliding Rollers												
	E31	Lateral Transfer												
	E32	Flat Top												

POULTRY		Accumulation of containers	Boiling	All kind of curves	Metal detectors	Chicken frames elevation	Elevating and descending spirals	Washers of containers	Quartering lines	Packaging lines	Slicing lines	Reject by weight control	Non-slip conveyors	
		Flat Top	*											
	E40	Flush Grid		*					*					
		Non Slip												
		Trian Friction												
		Flat Friction												
		Sliding Rollers												
	E41	Raised Rib												
	E50	Flat Top					*							
		Perforated Top												
		Flush Grid		*					*					
		Open Grid												
STRAIGHT		Open High												
L RA		Knurled												
\ \		Conic												
		Trian Friction												*
		Conic Friction												*
		Sliding Rollers												
	B50	Flat Top	*				*			*				
		Perforated Top		*										
		Flush Grid		*					*					
	D50	Flush Grid		*					*					
		Roller 0°	*		*									
		Roller 90°	*		*									
	E80	Flat Top	*				*			*				
		Perforated Flat		*										
	E925	Flush Grid			*			*	*		*			
		High Deck	*		*				*					
ĘS		Flat Friction			*									*
CURVES	E930	Flush Grid			*			*	*		*			
0		Conic			*									
		Conic Friction			*									*
		Sliding Rollers			*									

Industry **applications**

BE	VER	AGE	All kind of curves	Casing	Coolers	Elevating and descending spirals	Filters of residues	Control and inspection	Washers	Height speed lines	Palletisers and depalletisers	Pasteurisers	Accumulation tables
	Q 50	Flat Top											
		Conic											
	2	Flat Top											
	C12	Flush Grid								*			
	0.1	Nub Top							*	*	*		*
	F12	Flush Grid			*					*			
		Flat Top								*			
		Flush Grid								*			
	E20	Raised Rib											
	Ш	Trian Friction											
		Trian Rollers											
		Sliding Rollers											
		Flat Top								*			*
STRAIGHT	A24	Flush Grid											
STR		Raised Rib		*	*			*					*
		Flat Top											*
		Perforated Top											
		Flush Grid		*	*			*	*	*	*		*
		Open Grid											
	E30	Raised Rib		*	*			*					*
	Ш	Trian Friction											
		Flat Friction											
		Arrow Friction											
		Wave Embbeded											
		Sliding Rollers											
	E31	Lateral Transfer								*			
	E32	Flat Top								*			

BE	VER	AGE	All kind of curves	Casing	Coolers	Elevating and descending spirals	Filters of residues	Control and inspection	Washers	Height speed lines	Palletisers and depalletisers	Pasteurisers	Accumulation tables
		Flat Top									*		*
		Flush Grid		*	*				*		*	*	*
	E40	Non Slip											
	ů	Trian Friction											
		Flat Friction											
		Sliding Rollers											
	E41	Raised Rib		*	*						*	*	*
		Flat Top											
		Perforated Top					*						
		Flush Grid					*		*				
		Open Grid					*						
STRAIGHT	E50	Open High					*						
TRA	Ш	Knurled											
, co		Conic											
		Trian Friction											
		Conic Friction											
		Sliding Rollers											
		Flat Top											
	B50	Perforated Top					*						
		Flush Grid					*		*				
		Flush Grid		*	*				*		*	*	*
	D50	Roller 0°		*									*
		Roller 90°											
	E80	Flat Top											
	Ш	Perforated Flat					*						
	77	Flush Grid	*		*	*			*				
	E92	High Deck	*										
ES /ES		Flat Friction	*										
CURVES		Flush Grid	*		*	*			*				
0	E930	Conic	*										
	Ш	Conic Friction	*										
		Sliding Rollers	*										

Industry **applications**

CA	.ND\	<i>(</i>	Accumulation	Hopper feeders	Metal detectors	Distributors	Elevators	Elevating and descending spirals	Humidifiers	Cooling lines	Packaging
	Q50	Flat Top	*	*	*	*	*				*
	O	Conic		*			*				
		Flat Top									
	C12	Flush Grid			*						*
		Nub Top			*				*	*	*
	F12	Flush Grid								*	
		Flat Top	*	*	*	*					*
		Flush Grid			*				*	*	*
	E20	Raised Rib									
	E	Trian Friction									
		Trian Rollers									
		Sliding Rollers									
<u> </u>		Flat Top	*	*	*	*					*
STRAIGHT	A24	Flush Grid			*						
STS		Raised Rib									
		Flat Top	*	*	*	*	*				*
		Perforated Top									
		Flush Grid			*		*		*	*	*
		Open Grid									
	E30	Raised Rib									
	ш	Trian Friction									*
		Flat Friction									*
		Arrow Friction								*	
		Wave Embbeded									
		Sliding Rollers									
	E31	Lateral Transfer									
	E32	Flat Top									

CA	ND\	<i>(</i>	Accumulation	Hopper feeders	Metal detectors	Distributors	Elevators	Elevating and descending spirals	Humidifiers	Cooling lines	Packaging
		Flat Top									
		Flush Grid									
	E40	Non Slip									
	ù	Trian Friction									*
		Flat Friction									*
		Sliding Rollers									*
	E41	Raised Rib									
		Flat Top									
		Perforated Top									
		Flush Grid							*	*	
		Open Grid									
STRAIGHT	E50	Open High									
TRAI	ш	Knurled					*				
S		Conic									
		Trian Friction									
		Conic Friction									
		Sliding Rollers									
		Flat Top	*	*	*	*	*				*
	B 50	Perforated Top			*						
		Flush Grid							*	*	
	0	Flush Grid									*
	D50	Roller 0°									*
		Roller 90°									*
	E80	Flat Top	*	*	*	*					
		Perforated Flat			*						
	25	Flush Grid						*	*	*	
	E92	High Deck									*
VES		Flat Friction						*			*
CURVES		Flush Grid						*	*	*	
	E930	Conic						*			
	Ш	Conic Friction									*
		Sliding Rollers									*

Industry **applications**

ME	AT		Boiling	Metal detectors	Elevators	Washers	Cut and quartering lines	Evisceration lines	Transport and inspection lines	Liquid injection machines	Plastic film wrapping	Vacuum machines	Freezing tunnels	Pasteurisers
	050	Flat Top	*	*	*		*	*	*		*	*	*	
	O	Conic			*		*	*						
		Flat Top												
	C12	Flush Grid		*										
		Nub Top		*							*			
	F12	Flush Grid							*					
		Flat Top		*										
		Flush Grid		*							*			
	E20	Raised Rib												
	Ш	Trian Friction												
		Trian Rollers												
		Sliding Rollers												
노		Flat Top		*					*					
STRAIGHT	A24	Flush Grid		*										
STE		Raised Rib												
		Flat Top		*	*							*		
		Perforated Top												
		Flush Grid		*		*			*		*	*		
		Open Grid												
	E30	Raised Rib												
	ш	Trian Friction												
		Flat Friction												
		Arrow Friction												
		Wave Embbeded												
		Sliding Rollers												
	E31	Lateral Transfer												
	E32	Flat Top												

ME	AT		Boiling	Metal detectors	Elevators	Washers	Cut and quartering lines	Evisceration lines	Transport and inspection lines	Liquid injection machines	Plastic film wrapping	Vacuum machines	Freezing tunnels	Pasteurisers
		Flat Top												
		Flush Grid				*								
	E40	Non Slip												
	E4	Trian Friction												
		Flat Friction												
		Sliding Rollers												
	E41	Raised Rib												
		Flat Top			*									
		Perforated Top												
		Flush Grid				*				*	*	*	*	*
		Open Grid								*				*
GHT	E50	Open High								*				*
STRAIGHT	ш	Knurled												
ν,		Conic												
		Trian Friction												
		Conic Friction												
		Sliding Rollers												
		Flat Top	*	*	*		*	*	*		*	*		
	B50	Perforated Top	*	*				*						
		Flush Grid				*				*	*	*	*	*
		Flush Grid				*								
	D50	Roller 0°												
		Roller 90°												
	E80	Flat Top	*	*	*		*	*	*			*	*	
	Ш	Perforated Flat	*	*				*						
	Ŋ	Flush Grid				*			*					
	E925	High Deck							*					
/ES		Flat Friction												
CURVES		Flush Grid				*			*					
8	E930	Conic												
	Ш	Conic Friction												
		Sliding Rollers												

Industry **applications**

CA	NNI	NG	Whiteners	Selection tables	Boiling	Freezers	Metal detectors	Swan-necked elevators	Magnetic elevators	Casing	Washers	Oil filling lines	Palletisers and depalletisers	Pasteurisers	Accumulation tables	Acid towers
	Q50	Flat Top	*		*		*	*								
	O	Conic														
		Flat Top														
	C12	Flush Grid							*				*			
		Nub Top		*			*		*	*	*	*	*		*	
	F12	Flush Grid									*					
		Flat Top							*				*			
		Flush Grid		*			*			*		*				
	E20	Raised Rib					*			*			*			
		Trian Friction														
		Trian Rollers														
		Sliding Rollers														
-		Flat Top							*				*		*	
STRAIGHT	A24	Flush Grid		*			*			*					*	
STR		Raised Rib					*			*			*		*	
		Flat Top						*	*				*		*	
		Perforated Top														
		Flush Grid		*			*	*		*	*	*			*	
		Open Grid														*
	E30	Raised Rib					*			*			*		*	
	L L	Trian Friction														
		Flat Friction														
		Arrow Friction														
		Wave Embbeded														
		Sliding Rollers														
	E31	Lateral Transfer														
	E32	Flat Top														

CA	NNI	NG	Whiteners	Selection tables	Boiling	Freezers	Metal detectors	Swan-necked elevators	Magnetic elevators	Casing	Washers	Oil filling lines	Palletisers and depalletisers	Pasteurisers	Accumulation tables	Acid towers
		Flat Top											*		*	
		Flush Grid			*					*	*		*	*	*	
	E40	Non Slip														
	E ₂	Trian Friction														
		Flat Friction														
		Sliding Rollers														
	E41	Raised Rib								*			*	*	*	
		Flat Top					*	*								
		Perforated Top						*								
		Flush Grid			*	*	*	*			*	*				
		Open Grid						*								
GH	E50	Open High						*								
STRAIGHT	Ш	Knurled														
\o		Conic														
		Trian Friction														
		Conic Friction														
		Sliding Rollers														
		Flat Top	*		*		*	*								
	B50	Perforated Top	*		*			*								
		Flush Grid			*	*	*	*			*	*				*
		Flush Grid			*					*	*		*	*	*	
	D50	Roller 0°								*					*	
		Roller 90°														
	E80	Flat Top	*				*	*								
	Ш	Perforated Flat	*		*			*				*				
	ro.	Flush Grid				*					*					
	E925	High Deck														
S		Flat Friction														
CURVES		Flush Grid				*					*					
Ö	E930	Conic														
	E9	Conic Friction														
		Sliding Rollers														

Industry **applications**

VE	GET	ABLES	Whiteners	Freezers	All kind of curves	Metal detectors	Swan-necked elevators	Casing	Sewage filter	Hydrocooling	Transport lines in flooded pools	Selection tables in closed circuit	Pasteurisers	Non-slip conveyors	Treatment with acids
	50	Flat Top	*			*	*	*			*				
	Q	Conic												*	
		Flat Top													
	C12	Flush Grid				*									
		Nub Top				*		*	*	*					*
	F12	Flush Grid													
		Flat Top				*									
		Flush Grid				*		*	*		*				*
	E20	Raised Rib						*	*						
	EZ	Trian Friction												*	
		Trian Rollers													
		Sliding Rollers													
<u> </u>		Flat Top				*									
STRAIGHT	A24	Flush Grid						*	*		*				
STR		Raised Rib						*	*						
		Flat Top				*	*								
		Perforated Top													
		Flush Grid				*	*	*	*	*	*				
		Open Grid													
	E30	Raised Rib						*	*						
	Ш	Trian Friction												*	
		Flat Friction													
		Arrow Friction												*	
		Wave Embbeded													
		Sliding Rollers													
	E31	Lateral Transfer													
	E32	Flat Top													

VE	GET	ABLES	Whiteners	Freezers	All kind of curves	Metal detectors	Swan-necked elevators	Casing	Sewage filter	Hydrocooling	Transport lines in flooded pools	Selection tables in closed circuit	Pasteurisers	Non-slip conveyors	Treatment with acids
		Flat Top					*								
		Flush Grid	*				*	*					*		
	E40	Non Slip													
	ù	Trian Friction												*	
		Flat Friction												*	
		Sliding Rollers													
	E41	Raised Rib						*					*		
		Flat Top	*			*	*				*				
		Perforated Top	*								*				
		Flush Grid	*	*		*	*		*	*					*
١.		Open Grid							*						*
GHT	E50	Open High							*						*
STRAIGHT	ш	Knurled												*	
, v		Conic												*	
		Trian Friction												*	
		Conic Friction													
		Sliding Rollers													
		Flat Top	*				*	*			*				
	B50	Perforated Top	*								*				
		Flush Grid	*	*		*	*		*	*					*
		Flush Grid	*					*					*		
	D50	Roller 0°						*							
		Roller 90°													
	E80	Flat Top	*				*	*			*				
	Ш	Perforated Flat	*								*				
	2	Flush Grid		*	*							*			*
	E92	High Deck			*										
ES		Flat Friction			*									*	
CURVES		Flush Grid		*	*							*			*
O	E930	Conic			*									*	
	E9	Conic Friction			*									*	
		Sliding Rollers			*										

Industry **applications**

DA	IRY		Brine pools	Freezing Freezing	All kind of curves	Metal detectors	Cheese moulds elevators	Whey wringers	Drying ovens	Cooling lines	Chemical treatment machines	Cheese presses	Turning round of boxes
	50	Flat Top				*	*						*
	Q	Conic											
		Flat Top											
	C12	Flush Grid				*							
		Nub Top				*		*	*	*			
	F12	Flush Grid						*	*	*			
		Flat Top				*							
		Flush Grid				*		*	*	*	*		
	0.	Raised Rib											
	E20	Trian Friction											
		Trian Rollers											
		Sliding Rollers											
L		Flat Top				*							
STRAIGHT	A24	Flush Grid											
STR		Raised Rib											
		Flat Top				*							*
		Perforated Top											
		Flush Grid	*			*		*	*	*	*	*	*
		Open Grid											
	E30	Raised Rib											
	Ш	Trian Friction											
		Flat Friction											
		Arrow Friction											
		Wave Embbeded											
		Sliding Rollers											
	E31	Lateral Transfer											
	E32	Flat Top											

DA	IRY		Brine pools	Freezing Freezing	All kind of curves	Metal detectors	Cheese moulds elevators	Whey wringers	Drying ovens	Cooling lines	Chemical treatment machines	Cheese presses	Turning round of boxes
		Flat Top											
		Flush Grid											
	E40	Non Slip											
	ù	Trian Friction											
		Flat Friction											
		Sliding Rollers											
	E41	Raised Rib											
		Flat Top				*	*						*
		Perforated Top											
		Flush Grid	*	*		*	*	*	*	*	*	*	*
		Open Grid	*										
STRAIGHT	E50	Open High	*										
TRAI	ш	Knurled											
,		Conic											
		Trian Friction											
		Conic Friction											
		Sliding Rollers											
		Flat Top					*						
	B50	Perforated Top											
		Flush Grid	*	*		*	*	*	*	*	*	*	*
		Flush Grid						*	*			*	
	D50	Roller 0°											
		Roller 90°											
	E80	Flat Top					*						
	Ш	Perforated Flat											
	D.	Flush Grid		*	*			*	*	*			
	E925	High Deck			*								
/ES		Flat Friction			*								
CURVES		Flush Grid		*	*			*	*	*			
0	E930	Conic			*								
	ш	Conic Friction			*								
		Sliding Rollers			*								

Industry **applications**

PA	CKII	NG	Pile-up machines	Accumulation Freezing	Pallet automatic loader	Diverters	Metal detectors	Distributors	Flexible distributors	Vertical elevators	Accumulation or elevation spirals	Packing closed circuits
	Q50	Flat Top	*				*	*				
	O	Conic										
		Flat Top										
	C12	Flush Grid	*			*	*					
		Nub Top	*			*	*	*				
	F12	Flush Grid						*				
		Flat Top	*			*	*					
		Flush Grid					*					
	E20	Raised Rib										
		Trian Friction										
		Trian Rollers										
		Sliding Rollers		*								
		Flat Top					*					
STRAIGHT	A24	Flush Grid										
STR,		Raised Rib										
		Flat Top	*			*	*	*				
		Perforated Top										
		Flush Grid					*					
		Open Grid										
	E30	Raised Rib										
	Ш	Trian Friction										
		Flat Friction										
		Arrow Friction										
		Wave Embbeded		*								
		Sliding Rollers										
	E31	Lateral Transfer										
	E32	Flat Top										

PA	CKII	NG	Pile-up machines	Accumulation Freezing	Pallet automatic loader	Diverters	Metal detectors	Distributors	Flexible distributors	Vertical elevators	Accumulation or elevation spirals	Packing closed circuits
		Flat Top	*		*	*	*	*				
		Flush Grid								*		
	E40	Non Slip										
	ш	Trian Friction										
		Flat Friction										
		Sliding Rollers		*								
	E41	Raised Rib										
		Flat Top	*				*	*				
		Perforated Top										
		Flush Grid					*			*		
		Open Grid										
GHT	E50	Open High										
STRAIGHT	Ш́	Knurled										
,		Conic										
		Trian Friction										
		Conic Friction										
		Sliding Rollers										
		Flat Top	*				*	*				
	B50	Perforated Top										
		Flush Grid					*			*		
		Flush Grid			*					*		
	D50	Roller 0°		*	*	*		*				
		Roller 90°				*		*				
	E80	Flat Top										
	Ш	Perforated Flat										
	Ω.	Flush Grid				*			*		*	*
	E925	High Deck									*	*
ES,		Flat Friction									*	*
CURVES		Flush Grid				*			*		*	*
0	E930	Conic										
	Ш	Conic Friction										
		Sliding Rollers		*								

Industry **applications**

PA	STR	Υ	Accumulation tables of boxes-containers	Loaders of tunnel ovens	All kind of curves	Metal detectors	Elevators with flights	Vertical elevators	Cooling and freezing spirals	Cooling lines	Selection tables	Accumulation tables	Non-slip conveyors
	050	Flat Top				*	*	*					
	0	Conic											*
		Flat Top											
	C12	Flush Grid	*									*	
		Nub Top		*		*				*	*		
	F12	Flush Grid		*						*			
		Flat Top	*									*	
		Flush Grid		*		*				*	*		
	E20	Raised Rib								*		*	
	Ш	Trian Friction											*
		Trian Rollers											
		Sliding Rollers											
노		Flat Top	*										
STRAIGHT	A24	Flush Grid				*							
STE		Raised Rib											
		Flat Top	*				*						
		Perforated Top											
		Flush Grid	*	*		*	*			*	*		
		Open Grid											
	E30	Raised Rib								*		*	
	Ш	Trian Friction											*
		Flat Friction											*
		Arrow Friction											
		Wave Embbeded											
		Sliding Rollers											
	E31	Lateral Transfer											
	E32	Flat Top											

PA:	STR	Υ	Accumulation tables of boxes-containers	Loaders of tunnel ovens	All kind of curves	Metal detectors	Elevators with flights	Vertical elevators	Cooling and freezing spirals	Cooling lines	Selection tables	Accumulation tables	Non-slip conveyors
		Flat Top	*				*						
		Flush Grid	*				*						
	E40	Non Slip											
	ù	Trian Friction											*
		Flat Friction											*
		Sliding Rollers	*										
	E41	Raised Rib											
		Flat Top				*	*						
		Perforated Top											
		Flush Grid			*	*	*			*	*		
		Open Grid											
STRAIGHT	E50	Open High											
IRAI	й	Knurled											*
Ś		Conic											*
		Trian Friction											*
		Conic Friction											*
		Sliding Rollers											
		Flat Top					*	*					
	B50	Perforated Top											
		Flush Grid				*	*	*		*	*		
		Flush Grid	*					*					
	D50	Roller 0°	*									*	
		Roller 90°											
	E80	Flat Top					*	*					
	Ш	Perforated Flat											
	Ŋ	Flush Grid			*				*	*			
	E92	High Deck	*		*				*				
/ES		Flat Friction			*								
CURVES		Flush Grid			*				*	*			
0	E930	Conic			*								*
	ш	Conic Friction			*								*
		Sliding Rollers			*								

Industry **applications**

Industry **applications**

FIS	sH		Boiling	Desfreezing	Metal detectors	Elevators	leing of frozen products	Washers	Aseptic transport lines	Plastic film wrapping	Macerating and mixing applications	Freezing tunnels	Drying tunnels
	050	Flat Top			*	*		*	*				
	O	Conic				*							
		Flat Top											
	C12	Flush Grid			*				*	*			
		Nub Top			*		*		*	*	*		*
	F12	Flush Grid					*	*					*
		Flat Top			*				*	*			
		Flush Grid			*				*	*	*		*
	E20	Raised Rib					*			*			
	EZ	Trian Friction											
		Trian Rollers											
		Sliding Rollers											
Ŀ		Flat Top			*				*	*			
RAIGHT	A24	Flush Grid			*				*	*			*
STR		Raised Rib					*			*			
		Flat Top			*	*			*	*			
		Perforated Top									*		
		Flush Grid		*	*	*		*	*	*	*		
		Open Grid		*			*						
	E30	Raised Rib					*						
	Ш	Trian Friction											
		Flat Friction											
		Arrow Friction											
		Wave Embbeded											
		Sliding Rollers											
	E31	Lateral Transfer											
	E32	Flat Top											

FIS	SH		Bolling	Desfreezing	Metal detectors	Elevators	Icing of frozen products	Washers	Aseptic transport lines	Plastic film wrapping	Macerating and mixing applications	Freezing tunnels	Drying tunnels
		Flat Top				*							
		Flush Grid											
	E40	Non Slip											
	Ш	Trian Friction											
		Flat Friction											
		Sliding Rollers											
	E41	Raised Rib											
		Flat Top			*	*							
		Perforated Top									*		
		Flush Grid	*	*	*	*		*	*	*	*	*	
		Open Grid		*			*					*	*
STRAIGHT	E50	Open High		*			*					*	*
TRA	Ш	Knurled											
S		Conic											
		Trian Friction											
		Conic Friction											
		Sliding Rollers											
		Flat Top			*				*	*			
	B50	Perforated Top	*								*		*
		Flush Grid	*	*	*	*		*	*	*	*	*	
		Flush Grid						*					
	D50	Roller 0°											
		Roller 90°											
	E80	Flat Top			*	*			*	*			
	Ш	Perforated Flat									*		
	D.	Flush Grid						*	*			*	*
	E925	High Deck											
/ES		Flat Friction											
CURVES		Flush Grid						*	*			*	*
0	E930	Conic											
	й	Conic Friction											
		Sliding Rollers											

1

Industry **applications**

SN	ACH	<	Lines for product preparation	Feeder for rotating tables	Metal detectors	Elevators	Coolers	Washers	Salters
	Q50	Flat Top			*	*			
	õ	Conic				*			
		Flat Top							
	C12	Flush Grid			*				
		Nub Top	*		*		*		*
	F12	Flush Grid					*	*	
		Flat Top			*				
		Flush Grid	*		*		*	*	*
	E20	Raised Rib							
		Trian Friction		*					
		Trian Rollers							
		Sliding Rollers							
누		Flat Top			*				
RAIGHT	A24	Flush Grid			*				
STR		Raised Rib							
		Flat Top			*				
		Perforated Top							
		Flush Grid	*		*	*	*	*	*
		Open Grid							
	E30	Raised Rib							
	Ш	Trian Friction		*					
		Flat Friction		*					
		Arrow Friction							
		Wave Embbeded							
		Sliding Rollers							
	E31	Lateral Transfer							
	E32	Flat Top							

SN	ACŀ	<	Lines for product preparation	Feeder for rotating tables	Metal detectors	Elevators	Coolers	Washers	Salters
		Flat Top				*			
		Flush Grid							
	E40	Non Slip							
	ù	Trian Friction							
		Flat Friction							
		Sliding Rollers							
	E41	Raised Rib							
		Flat Top			*	*			
		Perforated Top							
		Flush Grid	*		*	*	*	*	*
١.		Open Grid							
STRAIGHT	E50	Open High							
TRAI	ш	Knurled							
V		Conic							
		Trian Friction							
		Conic Friction							
		Sliding Rollers							
		Flat Top			*	*			
	B50	Perforated Top							
		Flush Grid	*		*	*	*	*	*
		Flush Grid							
	D50	Roller 0°							
		Roller 90°							
	E80	Flat Top			*	*			
	Ш	Perforated Flat							
	īΩ	Flush Grid					*	*	
	E925	High Deck							
/ES		Flat Friction							
CURVES		Flush Grid					*	*	
	E930	Conic							
	Ш	Conic Friction							
		Sliding Rollers							

Industry **applications**

W	NE		Infeed for stalk removing	Bottles feeding	Elimination belts	Casing	Elevators	Washers	Lines of different speeds	Selection tables	Palletisers and depalletisers	Pasteurisers	Accumulation tables	Reception hoppers
	50	Flat Top	*	*	*	*	*			*				*
	O	Conic					*							
		Flat Top												
	C12	Flush Grid		*							*		*	
		Nub Top		*					*				*	
	F12	Flush Grid						*	*					
		Flat Top		*									*	
		Flush Grid		*							*			
	E20	Raised Rib									*		*	
	EZ	Trian Friction												
		Trian Rollers												
		Sliding Rollers												
		Flat Top		*					*				*	
STRAIGHT	A24	Flush Grid				*					*			
STR/		Raised Rib				*					*		*	
		Flat Top		*					*				*	
		Perforated Top												
		Flush Grid				*					*			
		Open Grid												
	E30	Raised Rib				*					*		*	
	Ш	Trian Friction												
		Flat Friction												
		Arrow Friction		*										
		Wave Embbeded												
		Sliding Rollers												
	E31	Lateral Transfer							*					
	E32	Flat Top							*					

WII	NE		Infeed for stalk removing	Bottles feeding	Elimination belts	Casing	Elevators	Washers	Lines of different speeds	Selection tables	Palletisers and depalletisers	Pasteurisers	Accumulation tables	Reception hoppers
		Flat Top												
		Flush Grid				*					*			
	E40	Non Slip												
	E ₂	Trian Friction												
		Flat Friction												
		Sliding Rollers												
	E41	Raised Rib				*					*	*	*	
		Flat Top		*			*							
		Perforated Top												
		Flush Grid						*						
		Open Grid												
GHT	E50	Open High												
STRAIGHT	ш	Knurled												
S.		Conic												
		Trian Friction												
		Conic Friction												
		Sliding Rollers												
		Flat Top	*	*	*		*			*				*
	B50	Perforated Top												
		Flush Grid									*			
		Flush Grid				*					*			
	D50	Roller 0°				*					*		*	
		Roller 90°												
	E80	Flat Top	*		*		*			*				*
	Ш	Perforated Flat												
	2	Flush Grid									*			
	E925	High Deck												
/ES		Flat Friction												
CURVES		Flush Grid									*			
	E930	Conic												
	Ш	Conic Friction												
		Sliding Rollers												

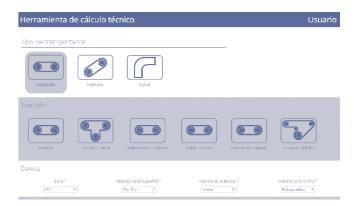
Customer service

CONTACTO

EUROBELT, S.A.

+34 983 217 480 +34 983 217 481

afher@eurobelt.com


Eurobelt makes available to its customers different communication channels, through which they can solve all your questions related to our modular belts solutions, as well as access to our recommendations when designing a complete system of internal transport.

We have incorporated, to the already traditional channels of communication, telephone, fax and email, the WhatsApp channel, and the Eurobelt AR Catalog app, without forgetting our website, www. eurobelt.com, in whose Customer Area you can download numerous documentations, sketches and technical data of all our products.

APLICACIÓN CÁLCULO TÉCNICO

Eurobelt has developed the Technical Calculation web application, which it makes available to all customers, through which we provide all the relevant data to consider when designing the conveyor structure, such as the weight of the belt, its effective resistance, power necessary for traction or expansion, among other data.

This information is of vital importance when building the internal transport solution based on modular belts so that it offers the right conditions of performance and durability.

GARANTÍA Y LIMITACIÓN DE RESPONSABILIDAD

EUROBELT elements are guaranteed for EUROBELT elements are manufactured defective, provided it is demonstrated the emission of toxic fumes. that the work has been done under normal conditions of use.

No other expressed or implicit guarantee is given unless it were set down in writing and approved by the manufacturer.

a period of one year from the date of with plastic materials. Consequently, delivery. Elements with respect to the their direct exposure to fire or to higher repair or substitution of any component temperatures than those indicated can whose materials or manufacture is produce their deflagration together with

> Any use of the EUROBELT products must observe the regulations and rules prevailing and the user is the only responsible to make observe these regulations when incorporating those products into any design machine.

The data included here are of informative nature. Their applicability to the design of any installation is not guaranteed.

The manufacturer does not assume any responsibility for the repercussions derived from the use of his products, whether it is based or not on the information herein.

Título original: Catálogo Técnico

©Afher Furnhelt S.A. 2024

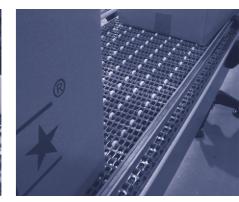
Reservados todos los derechos. No se permite la reproducción total o parcial de esta obra, ni su incorporación a un sistema informático, ni su transmisión en cualquier forma o por cualquier medio (electrónico, mecánico, fotocopia, grabación u otros) sin autorización previa y por escrito de los titulares del copyright. La infracción de dichos derechos puede constituir un delito contra la propiedad intelectual

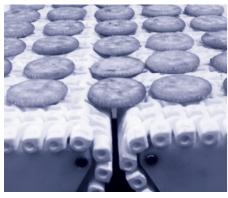
Gallery

Detail of real applications of each of our modular belts.

Series C12 Flat Top see page 38

Series C12 Flat Top see page 38


Series C12 Flush Grid see page 38


Series A24 Flat Top see page 58

Series E30 Flush Grid see page 66

Series E30 Sliding Rollers see page 68

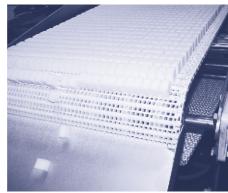
Series C12 Flush Grid see page 38

Series C12 Flush Grid see page 38

Series C12 Nub Top see page 38

Series E20 Flush Grid see page 50

Series E30 Flat Top see page 66


Series E30 Flush Grid see page 66

Series E20 Flush Grid see page 50

Series E20 Raised Rib see page 50

Series E20 Flush Grid see page 50

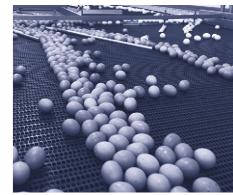
Series E30 Flush Grid see page 66

Series E30 Flush Grid see page 66

Series E30 Raised Rib see page 66

Series E30 Raised Rib see page 66

Series E20 Trian Friction see page 50


Series A24 Flat Top see page 58

Series E50 Flat Top see page 100

Series E925 Flat Friction see page 128

Series E30 Flush Grid see page 66

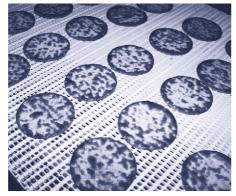
Series E30 Flush Grid see page 66

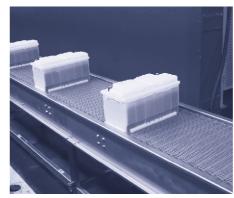
Series E40 Flush Grid see page 84

Series E30 Open Grid see page 66

Series E40 Non Slip see page 84

Series E40 Flush Grid see page 84


Series E40 Flush Grid see page 84


Series E30 Flat Friction see page 68

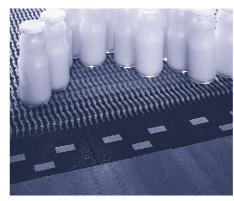
Series E30 Perforated see page 66

Series E30 Flush Grid see page 66

Series E40 Flush Grid see page 84

Series E30 Wave Embedded see page 68

Series E41 Raised Rib see page 92


Series E31 Lateral Transfer see page 78

Series E31 Lateral Transfer see page 78

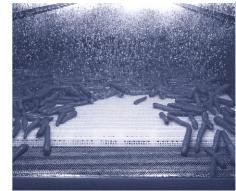
Series E32 Flat Top see page 78

Series E41 Raised Rib see page 92

Series E50 Open Grid see page 100

Series E30 Flush Grid see page 66

Series E32 Flat Top see page 78


Series E40 Flush Grid see page 84

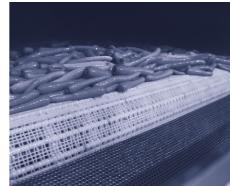
Series E40 Flush Grid see page 84

Series E50 Trian Friction see page 102

Series E50 Flush Grid see page 100

Series E50 Flush Grid see page 100

Series E50 Flush Grid see page 100


Series E50 Flat Top see page 100

Series E50 Flush Grid see page 100

Series E50 Trian Friction see page 102

Series E50 Flush Grid see page 100

Series E50 Flush Grid see page 100

Series E50 Flush Grid see page 100

Series E50 Flush Grid see page 100

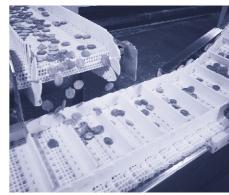
Series E50 Flush Grid see page 100

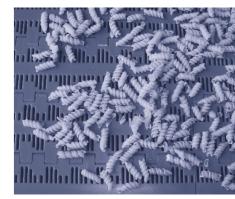
Series E50 Flat Top see page 100

Series E50 Trian Friction see page 102

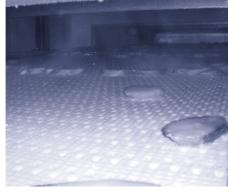
Series E50 Flush Grid see page 100

Series E50 Sliding Rollers see page 102


Series E50 Flat Top see page 100


Series E50 Perforated see page 100

Series E50 Flush Grid see page 100


Series E50 Flush Grid see page 100

Series B50 Perforated see page 112

Series E50 Flush Grid see page 100

Series E50 Flush Grid see page 100

Series E50 Flush Grid / Series E30 Flat Top ver págs. 100 y 66

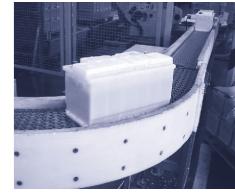
Series E50 Flat Top see page 100

Series E50 Flat Top see page 100

Series E80 Flat Top see page 120

Series E80 Flat Top see page 120

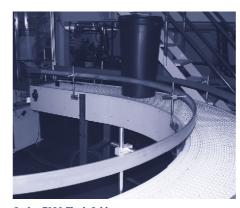
Series E80 Flat Top see page 120


Series B50 Flat Top see page 112

Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136

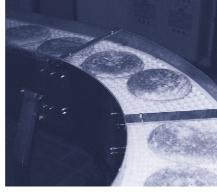

Series B50 Flat Top see page 112

Series B50 Flat Top see page 112

Series E80 Flat Top see page 120

Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136


Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136

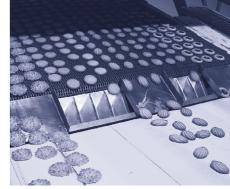
Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136

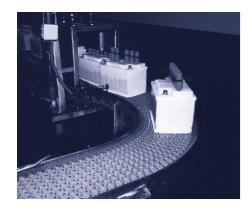
Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136


Series E930 Flush Grid see page 136

Series E930 Flush Grid see page 136


Series E50 Flat Top see page 100

Series E30 Raised Rib see page 66

Series E50 Flush Grid see page 100

Series E930 Flush Grid see page 136

Series E30 Flush Grid see page 136

Series E40 Flush Grid see page 84

Series E30 Flat Top see page 66

Series E80 Flat Top see page 120

Series C12 Flush Grid see page 38

Series E41 Raised Rib see page 92

Series E50 Conic see page 102

Series E50 Flush Grid see page 100

Series E30 Raised Rib see page 68

Series E930 Flush Grid see page 136

Series B50 Flat Top see page 112

Series E32 Flat Top see page 78

Series B50 Perforated see page 112

Series E50 Flush Grid see page 100

Series E50 Flush Grid see page 100

Series Q50 Flat Top see page 144

Series E40 Trian Friction see page 84

Series E30 Flush Grid see page 66

Series E930 Conic + E30 Trian Friction see page 136 y 68

Series E930 Flush Grid see page 136

Series E20 Trian Friction see page 50

Series E40 Flat Top see page 84

Series Q50 Conic see page 144

